metadata
base_model: HuggingFaceTB/SmolLM-135M-Instruct
datasets: HumanLLMs/Human-Like-DPO-Dataset
library_name: transformers
model_name: llm-course-hw2-reward-model
tags:
- generated_from_trainer
- trl
- reward-trainer
licence: license
Model Card for llm-course-hw2-reward-model
This model is a fine-tuned version of HuggingFaceTB/SmolLM-135M-Instruct on the HumanLLMs/Human-Like-DPO-Dataset dataset. It has been trained using TRL.
This model is a reward model used for training efromomr/llm-course-hw2-ppo.
train_loss: 0.07687531913222831
##Usage example
DEVICE = torch.device('cuda')
tokenizer = AutoTokenizer.from_pretrained(llm-course-hw2-reward-model)
reward_model = AutoModelForSequenceClassification.from_pretrained(llm-course-hw2-reward-model, num_labels = 1)
reward_model.config.pad_token_id = tokenizer.pad_token_id
reward_model = reward_model.to(DEVICE)
reward_model.eval()
inputs_chosen = tokenizer.apply_chat_template('Any text'], tokenize=False)
inputs_chosen = tokenizer(inputs_chosen, return_tensors="pt").to(DEVICE)
score_chosen = reward_model(**inputs_chosen).logits[0].cpu().detach()
print(score_chosen)
#0.223
Framework versions
- TRL: 0.15.2
- Transformers: 4.48.3
- Pytorch: 2.5.1+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}