efederici commited on
Commit
8f29e79
·
1 Parent(s): d99c557

Upload model

Browse files
Files changed (3) hide show
  1. config.json +47 -0
  2. modeling_lsg_bert.py +1204 -0
  3. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "adaptive": true,
4
+ "architectures": [
5
+ "LSGBertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "modeling_lsg_bert.LSGBertConfig",
10
+ "AutoModel": "modeling_lsg_bert.LSGBertModel",
11
+ "AutoModelForCausalLM": "modeling_lsg_bert.LSGBertLMHeadModel",
12
+ "AutoModelForMaskedLM": "modeling_lsg_bert.LSGBertForMaskedLM",
13
+ "AutoModelForMultipleChoice": "modeling_lsg_bert.LSGBertForMultipleChoice",
14
+ "AutoModelForPreTraining": "modeling_lsg_bert.LSGBertForPreTraining",
15
+ "AutoModelForQuestionAnswering": "modeling_lsg_bert.LSGBertForQuestionAnswering",
16
+ "AutoModelForSequenceClassification": "modeling_lsg_bert.LSGBertForSequenceClassification",
17
+ "AutoModelForTokenClassification": "modeling_lsg_bert.LSGBertForTokenClassification"
18
+ },
19
+ "base_model_prefix": "lsg",
20
+ "block_size": 128,
21
+ "classifier_dropout": null,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.1,
24
+ "hidden_size": 384,
25
+ "initializer_range": 0.02,
26
+ "intermediate_size": 1536,
27
+ "layer_norm_eps": 1e-12,
28
+ "lsh_num_pre_rounds": 1,
29
+ "mask_first_token": false,
30
+ "max_position_embeddings": 4096,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_global_tokens": 1,
34
+ "num_hidden_layers": 12,
35
+ "pad_token_id": 0,
36
+ "pool_with_global": true,
37
+ "position_embedding_type": "absolute",
38
+ "sparse_block_size": 128,
39
+ "sparsity_factor": 2,
40
+ "sparsity_type": "norm",
41
+ "tokenizer_class": "XLMRobertaTokenizer",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.31.0",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 250037
47
+ }
modeling_lsg_bert.py ADDED
@@ -0,0 +1,1204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import warn
2
+ from transformers.models.bert.modeling_bert import *
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformers.models.bert.configuration_bert import BertConfig
6
+ import sys
7
+
8
+ AUTO_MAP = {
9
+ "AutoModel": "modeling_lsg_bert.LSGBertModel",
10
+ "AutoModelForCausalLM": "modeling_lsg_bert.LSGBertLMHeadModel",
11
+ "AutoModelForMaskedLM": "modeling_lsg_bert.LSGBertForMaskedLM",
12
+ "AutoModelForPreTraining": "modeling_lsg_bert.LSGBertForPreTraining",
13
+ "AutoModelForMultipleChoice": "modeling_lsg_bert.LSGBertForMultipleChoice",
14
+ "AutoModelForQuestionAnswering": "modeling_lsg_bert.LSGBertForQuestionAnswering",
15
+ "AutoModelForSequenceClassification": "modeling_lsg_bert.LSGBertForSequenceClassification",
16
+ "AutoModelForTokenClassification": "modeling_lsg_bert.LSGBertForTokenClassification"
17
+ }
18
+
19
+ class LSGBertConfig(BertConfig):
20
+ """
21
+ This class overrides :class:`~transformers.BertConfig`. Please check the superclass for the appropriate
22
+ documentation alongside usage examples.
23
+ """
24
+
25
+ base_model_prefix = "lsg"
26
+ model_type = "bert"
27
+
28
+ def __init__(
29
+ self,
30
+ adaptive=True,
31
+ base_model_prefix="lsg",
32
+ block_size=128,
33
+ lsh_num_pre_rounds=1,
34
+ mask_first_token=False,
35
+ num_global_tokens=1,
36
+ pool_with_global=True,
37
+ sparse_block_size=128,
38
+ sparsity_factor=2,
39
+ sparsity_type="norm",
40
+ **kwargs
41
+ ):
42
+ """Constructs LSGBertConfig."""
43
+ super().__init__(**kwargs)
44
+
45
+ self.adaptive = adaptive
46
+ self.auto_map = AUTO_MAP
47
+ self.base_model_prefix = base_model_prefix
48
+ self.block_size = block_size
49
+ self.lsh_num_pre_rounds = lsh_num_pre_rounds
50
+ self.mask_first_token = mask_first_token
51
+ self.num_global_tokens = num_global_tokens
52
+ self.pool_with_global = pool_with_global
53
+ self.sparse_block_size = sparse_block_size
54
+ self.sparsity_factor = sparsity_factor
55
+ self.sparsity_type = sparsity_type
56
+
57
+ if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
58
+ logger.warning(
59
+ "[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \
60
+ setting sparsity_type=None, computation will skip sparse attention")
61
+ self.sparsity_type = None
62
+
63
+ if self.sparsity_type in ["stride", "block_stride"]:
64
+ if self.sparsity_factor > self.encoder_attention_heads:
65
+ logger.warning(
66
+ "[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity"
67
+ )
68
+
69
+ if self.num_global_tokens < 1:
70
+ logger.warning(
71
+ "[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
72
+ )
73
+ self.num_global_tokens = 1
74
+ elif self.num_global_tokens > 512:
75
+ logger.warning(
76
+ "[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512"
77
+ )
78
+ self.num_global_tokens = 512
79
+
80
+ if self.sparsity_factor > 0:
81
+ assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
82
+ assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
83
+
84
+ if self.mask_first_token and not pool_with_global:
85
+ logger.warning(
86
+ "[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.")
87
+ self.pool_with_global = True
88
+
89
+ if hasattr(self, "position_embedding_type"):
90
+ if self.position_embedding_type != "absolute":
91
+ logger.warning(
92
+ "[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.")
93
+
94
+
95
+ class BaseSelfAttention(nn.Module):
96
+
97
+ def init_modules(self, config):
98
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
99
+ config, "embedding_size"
100
+ ):
101
+ raise ValueError(
102
+ "The hidden size (%d) is not a multiple of the number of attention "
103
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
104
+ )
105
+
106
+ self.num_attention_heads = config.num_attention_heads
107
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
108
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
109
+
110
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
111
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
112
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
113
+
114
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
115
+
116
+ def transpose_for_scores(self, x):
117
+ new_x_shape = x.size()[:-1] + (
118
+ self.num_attention_heads,
119
+ self.attention_head_size,
120
+ )
121
+ x = x.view(*new_x_shape)
122
+ return x.permute(0, 2, 1, 3)
123
+
124
+ def reshape_output(self, context_layer):
125
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
126
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
127
+ return context_layer.view(*new_context_layer_shape)
128
+
129
+ def project_QKV(self, hidden_states):
130
+
131
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
132
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
133
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
134
+ return query_layer, key_layer, value_layer
135
+
136
+
137
+ class BaseAttentionProduct(nn.Module):
138
+
139
+ def __init__(self, config):
140
+ """
141
+ Compute attention: softmax(Q @ K.T) @ V
142
+ """
143
+ super().__init__()
144
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
145
+
146
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
147
+
148
+ d = query_layer.shape[-1]
149
+
150
+ # Take the dot product between "query" and "key" to get the raw attention scores.
151
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
152
+
153
+ del query_layer
154
+ del key_layer
155
+
156
+ if attention_mask is not None:
157
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
158
+ attention_scores = attention_scores + attention_mask
159
+ del attention_mask
160
+
161
+ # Normalize the attention scores to probabilities.
162
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
163
+
164
+ # This is actually dropping out entire tokens to attend to, which might
165
+ # seem a bit unusual, but is taken from the original Transformer paper.
166
+ context_layer = self.dropout(attention_probs) @ value_layer
167
+
168
+ return context_layer
169
+
170
+
171
+ class CausalAttentionProduct(nn.Module):
172
+
173
+ def __init__(self, config):
174
+ """
175
+ Compute attention: softmax(Q @ K.T) @ V
176
+ """
177
+ super().__init__()
178
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
179
+ self.block_size = config.block_size
180
+
181
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None, causal_shape=None):
182
+
183
+ d = query_layer.shape[-1]
184
+
185
+ # Take the dot product between "query" and "key" to get the raw attention scores.
186
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
187
+
188
+ del query_layer
189
+ del key_layer
190
+
191
+ if attention_mask is not None:
192
+ # Add causal mask
193
+ causal_shape = (self.block_size, self.block_size) if causal_shape is None else causal_shape
194
+ causal_mask = torch.tril(
195
+ torch.ones(*causal_shape, device=attention_mask.device, dtype=attention_scores.dtype),
196
+ diagonal=-1
197
+ )
198
+
199
+ # Min value
200
+ dtype_min = torch.tensor(
201
+ torch.finfo(attention_scores.dtype).min, device=attention_scores.device, dtype=attention_scores.dtype
202
+ )
203
+
204
+ # Build causal + attention_mask
205
+ causal_mask = torch.nn.functional.pad(causal_mask.T * dtype_min, (attention_mask.size()[-1] - self.block_size, 0), value=0)
206
+ attention_mask = torch.max(attention_mask + causal_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0), dtype_min)
207
+
208
+ attention_scores = attention_scores + attention_mask
209
+ del attention_mask
210
+ del causal_mask
211
+
212
+ # Normalize the attention scores to probabilities.
213
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
214
+
215
+ # This is actually dropping out entire tokens to attend to, which might
216
+ # seem a bit unusual, but is taken from the original Transformer paper.
217
+ context_layer = self.dropout(attention_probs) @ value_layer
218
+
219
+ return context_layer
220
+
221
+
222
+ class LSGAttentionProduct(nn.Module):
223
+
224
+ def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4, is_causal=False):
225
+ """
226
+ Compute block or overlapping blocks attention products
227
+ """
228
+ super().__init__()
229
+
230
+ self.block_size = block_size
231
+ self.sparse_block_size = sparse_block_size
232
+ self.sparsity_factor = sparsity_factor
233
+ self.is_causal = is_causal
234
+
235
+ if self.block_size is None:
236
+ self.block_size = config.block_size
237
+
238
+ if self.sparse_block_size is None:
239
+ self.sparse_block_size = config.sparse_block_size
240
+
241
+ # Shape of blocks
242
+ self.local_shapes = (self.block_size*3, self.block_size)
243
+ if self.sparse_block_size and self.sparsity_factor > 0:
244
+ self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
245
+
246
+ if is_causal:
247
+ self.attention = CausalAttentionProduct(config)
248
+ else:
249
+ self.attention = BaseAttentionProduct(config)
250
+
251
+ def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
252
+
253
+ # Build local tokens
254
+ local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
255
+ del hidden_states
256
+
257
+ # Build sparse tokens
258
+ if sparse_hidden_states is not None:
259
+ sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
260
+
261
+ return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
262
+
263
+ def forward(
264
+ self,
265
+ query_layer,
266
+ key_layer,
267
+ value_layer,
268
+ attention_mask=None,
269
+ sparse_key=None,
270
+ sparse_value=None,
271
+ sparse_mask=None,
272
+ global_key=None,
273
+ global_value=None,
274
+ global_mask=None
275
+ ):
276
+
277
+ # Input batch, heads, length, hidden_size
278
+ n, h, t, d = query_layer.size()
279
+ n_blocks = t // self.block_size
280
+ assert t % self.block_size == 0
281
+
282
+ key_layer = self.build_lsg_inputs(
283
+ key_layer,
284
+ sparse_key,
285
+ global_key
286
+ )
287
+ del sparse_key
288
+ del global_key
289
+
290
+ value_layer = self.build_lsg_inputs(
291
+ value_layer,
292
+ sparse_value,
293
+ global_value
294
+ )
295
+ del sparse_value
296
+ del global_value
297
+
298
+ attention_mask = self.build_lsg_inputs(
299
+ attention_mask,
300
+ sparse_mask,
301
+ global_mask.transpose(-1, -2),
302
+ is_attn_mask=True
303
+ ).transpose(-1, -2)
304
+ del sparse_mask
305
+ del global_mask
306
+
307
+ # expect (..., t, d) shape
308
+ # Compute attention
309
+ context_layer = self.attention(
310
+ query_layer=self.chunk(query_layer, n_blocks),
311
+ key_layer=key_layer,
312
+ value_layer=value_layer,
313
+ attention_mask=attention_mask
314
+ )
315
+
316
+ return context_layer.reshape(n, h, -1, d)
317
+
318
+ def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
319
+
320
+ size, step = self.local_shapes
321
+ s = (size - step) // 2
322
+
323
+ # Pad before block reshaping
324
+ if is_attn_mask:
325
+ pad_value = torch.finfo(hidden_states.dtype).min
326
+ hidden_states = hidden_states.transpose(-1, -2)
327
+ else:
328
+ pad_value = 0
329
+
330
+ hidden_states = torch.nn.functional.pad(
331
+ hidden_states.transpose(-1, -2),
332
+ pad=(s, s),
333
+ value=pad_value
334
+ ).transpose(-1, -2)
335
+
336
+ # Make blocks
337
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
338
+
339
+ # Skip third block if causal
340
+ if self.is_causal:
341
+ return hidden_states[..., :size*2//3, :]
342
+
343
+ return hidden_states
344
+
345
+ def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
346
+
347
+ size, step = self.sparse_shapes
348
+
349
+ # In case of odd case
350
+ odd_offset = (step % 2)
351
+
352
+ # n, h, t, d*2 + 1
353
+ size = size*2
354
+ s = (size - step) // 2 + odd_offset
355
+
356
+ # Pad before block reshaping
357
+ if is_attn_mask:
358
+ pad_value = torch.finfo(hidden_states.dtype).min
359
+ hidden_states = hidden_states.transpose(-1, -2)
360
+ else:
361
+ pad_value = 0
362
+
363
+ hidden_states = torch.nn.functional.pad(
364
+ hidden_states.transpose(-1, -2),
365
+ pad=(s, s),
366
+ value=pad_value
367
+ ).transpose(-1, -2)
368
+
369
+ # Make blocks
370
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
371
+
372
+ # Fix case where block_size == sparsify_factor
373
+ if odd_offset:
374
+ hidden_states = hidden_states[..., :-1, :, :]
375
+
376
+ # Indexes for selection
377
+ u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
378
+ s = self.sparse_block_size
379
+
380
+ # Skip right block if causal
381
+ if self.is_causal:
382
+ return hidden_states[..., u-s:u, :]
383
+
384
+ u_ = u + odd_offset
385
+ return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
386
+
387
+ def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
388
+
389
+ n, h, b, t, d = x_local.size()
390
+ x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
391
+ if x_sparse is not None:
392
+ return torch.cat([x_global, x_sparse, x_local], dim=dim)
393
+ return torch.cat([x_global, x_local], dim=dim)
394
+
395
+ def chunk(self, x, n_blocks):
396
+
397
+ t, d = x.size()[-2:]
398
+ return x.reshape(*x.size()[:-2], n_blocks, -1, d)
399
+
400
+
401
+ class LSGBertEmbeddings(BertEmbeddings):
402
+
403
+ def __init__(self, config):
404
+ super().__init__(config)
405
+
406
+ self.num_global_tokens = config.num_global_tokens
407
+
408
+ # Hardcoded but partially trained
409
+ self.global_embeddings = nn.Embedding(512, embedding_dim=config.hidden_size, )
410
+
411
+ self.block_size = config.block_size
412
+
413
+ def forward(
414
+ self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
415
+ ):
416
+ if input_ids is not None:
417
+ input_shape = input_ids.size()
418
+ else:
419
+ input_shape = inputs_embeds.size()[:-1]
420
+
421
+ seq_length = input_shape[1]
422
+
423
+ if position_ids is None:
424
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
425
+
426
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
427
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
428
+ # issue #5664
429
+ if token_type_ids is None:
430
+ if hasattr(self, "token_type_ids"):
431
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
432
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
433
+ token_type_ids = buffered_token_type_ids_expanded
434
+ else:
435
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
436
+
437
+ if inputs_embeds is None:
438
+ inputs_embeds = self.word_embeddings(input_ids)
439
+ token_type_embeddings = self.token_type_embeddings(token_type_ids[:, :seq_length])
440
+
441
+ embeddings = inputs_embeds + token_type_embeddings
442
+ if self.position_embedding_type == "absolute":
443
+ position_embeddings = self.position_embeddings(position_ids[:, :seq_length])
444
+ embeddings += position_embeddings
445
+
446
+ #if self.num_global_tokens < 0:
447
+ n, t, d = embeddings.size()
448
+
449
+ # Add global_tokens
450
+ indexes = torch.arange(self.num_global_tokens, device=embeddings.device).reshape(1, -1)
451
+ global_embeddings = self.global_embeddings(indexes)
452
+ embeddings = torch.cat([global_embeddings.expand(n, -1, d), embeddings], dim=-2)
453
+
454
+ embeddings = self.LayerNorm(embeddings)
455
+ embeddings = self.dropout(embeddings)
456
+ return embeddings
457
+
458
+
459
+ class LSGSelfAttention(BaseSelfAttention):
460
+ '''
461
+ Compute local attention with overlapping blocs
462
+ Use global attention for tokens with highest norm
463
+ '''
464
+ def __init__(self, config):
465
+ super().__init__()
466
+
467
+ self.init_modules(config)
468
+
469
+ self.block_size = config.block_size
470
+ self.sparse_block_size = config.sparse_block_size
471
+ self.num_global_tokens = config.num_global_tokens
472
+ self.sparsity_factor = config.sparsity_factor
473
+ self.is_causal = config.is_decoder
474
+ self.is_decoder = config.is_decoder
475
+
476
+ self.attention = LSGAttentionProduct(
477
+ config,
478
+ block_size=config.block_size,
479
+ sparse_block_size=config.sparse_block_size,
480
+ sparsity_factor=self.sparsity_factor,
481
+ is_causal=self.is_causal
482
+ )
483
+
484
+ if self.is_causal:
485
+ self.causal_attention = CausalAttentionProduct(config)
486
+ self.full_attention = BaseAttentionProduct(config)
487
+
488
+ sparse_functions = {
489
+ "norm": self.get_sparse_tokens_with_norm,
490
+ "pooling": self.get_sparse_tokens_with_pooling,
491
+ "lsh": self.get_sparse_tokens_with_lsh,
492
+ "stride": self.get_sparse_tokens_with_stride,
493
+ "block_stride": self.get_sparse_tokens_with_block_stride,
494
+ }
495
+
496
+ self.sparsity_type = config.sparsity_type
497
+ self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
498
+
499
+ if config.sparsity_type == "lsh":
500
+ self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
501
+
502
+ def get_sparse_tokens_with_norm(self, keys, values, mask):
503
+
504
+ if self.sparsity_factor == 1:
505
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
506
+
507
+ with torch.no_grad():
508
+
509
+ block_size = min(self.block_size, self.sparse_block_size)
510
+ key_norm = keys.detach().norm(dim=-1, keepdim=True)
511
+ key_norm = key_norm * ~mask.transpose(-1, -2).bool()
512
+ key_norm = self.chunk(key_norm, block_size)
513
+
514
+ n, h, b, t, d = key_norm.size()
515
+
516
+ idx = key_norm.argsort(dim=-2)
517
+ del key_norm
518
+ idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
519
+
520
+ split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
521
+ sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
522
+
523
+ d = keys.size()[-1]
524
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
525
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
526
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
527
+
528
+ return keys, values, mask
529
+
530
+ def get_sparse_tokens_with_pooling(self, keys, values, mask):
531
+
532
+ if self.sparsity_factor == 1:
533
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
534
+
535
+ keys = self.chunk(keys, self.sparsity_factor)
536
+ values = self.chunk(values, self.sparsity_factor)
537
+
538
+ n, h, b, t, d = keys.size()
539
+ mask = mask.reshape(n, 1, b, 1, t)
540
+ mask = ~mask.transpose(-1, -2).bool()
541
+
542
+ keys = keys * mask
543
+ values = values * mask
544
+
545
+ mask = mask.sum(dim=-2)
546
+ keys = keys.sum(dim=-2) / (mask + 1e-6)
547
+ values = values.sum(dim=-2) / (mask + 1e-6)
548
+
549
+ mask = (1. - mask.clamp(0, 1))
550
+ mask *= torch.finfo(mask.dtype).min
551
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
552
+
553
+ def get_sparse_tokens_with_stride(self, keys, values, mask):
554
+
555
+ if self.sparsity_factor == 1:
556
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
557
+
558
+ n, h, t, d = keys.size()
559
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
560
+ sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
561
+ sparse_idx = sparse_idx.expand(n, h, -1, 1)
562
+
563
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
564
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
565
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
566
+
567
+ return keys, values, mask
568
+
569
+ def get_sparse_tokens_with_block_stride(self, keys, values, mask):
570
+
571
+ if self.sparsity_factor == 1:
572
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
573
+
574
+ n, h, t, d = keys.size()
575
+
576
+ t, b = self.block_size, t // self.block_size
577
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
578
+ sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
579
+ sparse_idx = (sparse_idx % t)
580
+ sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
581
+ sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
582
+
583
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
584
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
585
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
586
+
587
+ return keys, values, mask
588
+
589
+ def get_sparse_tokens_with_lsh(self, keys, values, mask):
590
+
591
+ if self.sparsity_factor == 1:
592
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
593
+
594
+ block_size = min(self.block_size, self.sparse_block_size)
595
+ keys = self.chunk(keys, block_size)
596
+ values = self.chunk(values, block_size)
597
+
598
+ n, h, b, t, d = keys.size()
599
+ mask = mask.reshape(n, 1, b, 1, t)
600
+ mask = ~mask.transpose(-1, -2).bool()
601
+
602
+ keys = keys * mask
603
+ values = values * mask
604
+ mask = mask.expand(-1, h, -1, -1, -1).float()
605
+
606
+ extra_factor = 1
607
+
608
+ for _ in range(self.lsh_num_pre_rounds):
609
+ keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
610
+
611
+ keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
612
+ keys /= mask + 1e-8
613
+ values /= mask + 1e-8
614
+
615
+ mask = (1. - mask.clamp(0, 1))
616
+ mask *= torch.finfo(mask.dtype).min
617
+
618
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
619
+
620
+ def lsh_round(self, keys, values, mask, output_size):
621
+
622
+ with torch.no_grad():
623
+
624
+ n_hashes = output_size // 2
625
+ n, h, b, t, d = keys.size()
626
+ binary_mask = mask.clamp(0, 1)
627
+
628
+ indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
629
+ indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
630
+
631
+ n, h, b, t, d = keys.size()
632
+
633
+ x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
634
+ mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
635
+ keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
636
+ values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
637
+ mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
638
+
639
+ return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
640
+
641
+ def forward(
642
+ self,
643
+ hidden_states,
644
+ attention_mask=None,
645
+ head_mask=None,
646
+ encoder_hidden_states=None,
647
+ encoder_attention_mask=None,
648
+ past_key_value=None,
649
+ output_attentions=False,
650
+ ):
651
+
652
+ query_layer = self.query(hidden_states)
653
+
654
+ # If this is instantiated as a cross-attention module, the keys
655
+ # and values come from an encoder; the attention mask needs to be
656
+ # such that the encoder's padding tokens are not attended to.
657
+ is_cross_attention = encoder_hidden_states is not None
658
+
659
+ if is_cross_attention and past_key_value is not None:
660
+ # reuse k,v, cross_attentions
661
+ key_layer = past_key_value[0]
662
+ value_layer = past_key_value[1]
663
+ attention_mask = encoder_attention_mask
664
+ elif is_cross_attention:
665
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
666
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
667
+ attention_mask = encoder_attention_mask
668
+ elif past_key_value is not None:
669
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
670
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
671
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
672
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
673
+ else:
674
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
675
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
676
+
677
+ query_layer = self.transpose_for_scores(query_layer)
678
+
679
+ if self.is_decoder:
680
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
681
+ # Further calls to cross_attention layer can then reuse all cross-attention
682
+ # key/value_states (first "if" case)
683
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
684
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
685
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
686
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
687
+ past_key_value = (key_layer, value_layer)
688
+
689
+ if is_cross_attention:
690
+ outputs = self.cross_attention_forward(
691
+ query_layer=query_layer,
692
+ key_layer=key_layer,
693
+ value_layer=value_layer,
694
+ attention_mask=attention_mask,
695
+ output_attentions=output_attentions
696
+ )
697
+ else:
698
+ outputs = self.causal_forward(
699
+ query_layer,
700
+ key_layer,
701
+ value_layer,
702
+ attention_mask=attention_mask,
703
+ output_attentions=output_attentions,
704
+ )
705
+
706
+ outputs = outputs + ((key_layer, value_layer),)
707
+
708
+ else:
709
+ outputs = self.not_causal_forward(
710
+ query_layer,
711
+ key_layer,
712
+ value_layer,
713
+ attention_mask=attention_mask,
714
+ output_attentions=output_attentions
715
+ )
716
+
717
+ return outputs
718
+
719
+ def causal_forward(
720
+ self,
721
+ query_layer,
722
+ key_layer,
723
+ value_layer,
724
+ attention_mask=None,
725
+ output_attentions=False,
726
+ ):
727
+
728
+ n, h, t, d = key_layer.size()
729
+
730
+ # Cat global mask
731
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
732
+
733
+ # Split input into global tokens and other tokens
734
+ split = (self.num_global_tokens, t - self.num_global_tokens)
735
+ global_query, query_layer = query_layer.split(split, dim=-2)
736
+
737
+ # Use normal causal attention if local attention covers every tokens
738
+ if t <= 2 * self.block_size + self.num_global_tokens:
739
+ context_layer = self.causal_attention(
740
+ query_layer=query_layer,
741
+ key_layer=key_layer,
742
+ value_layer=value_layer,
743
+ attention_mask=attention_mask,
744
+ causal_shape=(t - self.num_global_tokens, t - self.num_global_tokens)
745
+ )
746
+
747
+ context_layer = torch.cat([global_query, context_layer], dim=-2)
748
+ return (self.reshape_output(context_layer), )
749
+
750
+ # Split K Q M on global and non global
751
+ global_key, key_layer = key_layer.split(split, dim=-2)
752
+ global_value, value_layer = value_layer.split(split, dim=-2)
753
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
754
+
755
+ n, h, t, d = key_layer.size()
756
+
757
+ # Get sparse idx
758
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
759
+ if self.sparse_block_size and self.sparsity_factor > 0:
760
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
761
+
762
+ # Expand masks on heads
763
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
764
+ global_mask = global_mask.expand(-1, h, -1, -1)
765
+
766
+ # Compute dot product attention
767
+ context_layer = self.attention(
768
+ query_layer,
769
+ key_layer,
770
+ value_layer,
771
+ attention_mask,
772
+ sparse_key=sparse_key,
773
+ sparse_value=sparse_value,
774
+ sparse_mask=sparse_mask,
775
+ global_key=global_key,
776
+ global_value=global_value,
777
+ global_mask=global_mask
778
+ )
779
+
780
+ # Merge pseudo global (causal) and local-sparse tokens
781
+ context_layer = torch.cat([global_query, context_layer], dim=-2)
782
+ context_layer = self.reshape_output(context_layer)
783
+
784
+ return (context_layer,)
785
+
786
+ def not_causal_forward(
787
+ self,
788
+ query_layer,
789
+ key_layer,
790
+ value_layer,
791
+ attention_mask=None,
792
+ output_attentions=False,
793
+ ):
794
+
795
+ n, h, t, d = query_layer.size()
796
+
797
+ # Cat global mask
798
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
799
+
800
+ # Use normal attention if local attention covers every tokens
801
+ if t <= 2 * self.block_size + self.num_global_tokens:
802
+ context_layer = self.full_attention(
803
+ query_layer=query_layer,
804
+ key_layer=key_layer,
805
+ value_layer=value_layer,
806
+ attention_mask=attention_mask
807
+ )
808
+ return (self.reshape_output(context_layer), )
809
+
810
+ # Split input into global tokens and other tokens
811
+ split = (self.num_global_tokens, t - self.num_global_tokens)
812
+ global_query, query_layer = query_layer.split(split, dim=-2)
813
+
814
+ # Get global_attention
815
+ bos = self.full_attention(
816
+ query_layer=global_query,
817
+ key_layer=key_layer,
818
+ value_layer=value_layer,
819
+ attention_mask=attention_mask
820
+ )
821
+
822
+ # Split K Q M on global and non global
823
+ global_key, key_layer = key_layer.split(split, dim=-2)
824
+ global_value, value_layer = value_layer.split(split, dim=-2)
825
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
826
+
827
+ n, h, t, d = key_layer.size()
828
+
829
+ # Get sparse idx
830
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
831
+
832
+ if self.sparse_block_size and self.sparsity_factor > 0:
833
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
834
+
835
+ # Expand masks on heads
836
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
837
+ global_mask = global_mask.expand(-1, h, -1, -1)
838
+
839
+ # Compute dot product attention
840
+ context_layer = self.attention(
841
+ query_layer,
842
+ key_layer,
843
+ value_layer,
844
+ attention_mask,
845
+ sparse_key=sparse_key,
846
+ sparse_value=sparse_value,
847
+ sparse_mask=sparse_mask,
848
+ global_key=global_key,
849
+ global_value=global_value,
850
+ global_mask=global_mask
851
+ )
852
+
853
+ # Merge global and local-sparse tokens
854
+ context_layer = torch.cat([bos, context_layer], dim=-2)
855
+ context_layer = self.reshape_output(context_layer)
856
+
857
+ return (context_layer,)
858
+
859
+ def cross_attention_forward(
860
+ self,
861
+ query_layer,
862
+ key_layer,
863
+ value_layer,
864
+ attention_mask=None,
865
+ output_attentions=False,
866
+ ):
867
+
868
+ context_layer = self.full_attention(
869
+ query_layer=query_layer,
870
+ key_layer=key_layer,
871
+ value_layer=value_layer,
872
+ attention_mask=attention_mask
873
+ )
874
+ return (self.reshape_output(context_layer), )
875
+
876
+ def chunk(self, x, chunk_size):
877
+
878
+ n, h, t, d = x.size()
879
+ return x.reshape(n, h, -1, chunk_size, d)
880
+
881
+
882
+ class LSGAttention(BertAttention):
883
+
884
+ def __init__(self, config):
885
+
886
+ nn.Module.__init__(self)
887
+
888
+ self.self = LSGSelfAttention(config)
889
+ self.output = BertSelfOutput(config)
890
+ self.pruned_heads = set()
891
+
892
+
893
+ class LSGBertLayer(BertLayer):
894
+
895
+ def __init__(self, config):
896
+
897
+ super().__init__(config)
898
+
899
+ self.attention = LSGAttention(config)
900
+ if self.add_cross_attention:
901
+ if not self.is_decoder:
902
+ assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
903
+ self.crossattention = LSGAttention(config)
904
+
905
+
906
+ class LSGBertEncoder(BertEncoder):
907
+
908
+ def __init__(self, config):
909
+
910
+ super().__init__(config)
911
+
912
+ self.layer = nn.ModuleList([LSGBertLayer(config) for _ in range(config.num_hidden_layers)])
913
+
914
+ assert hasattr(config, "num_global_tokens")
915
+ self.num_global_tokens = config.num_global_tokens
916
+ self.pad_idx = config.pad_token_id
917
+
918
+ assert hasattr(config, "block_size") and hasattr(config, "adaptive")
919
+ self.block_size = config.block_size
920
+ self.adaptive = config.adaptive
921
+ self.mask_first_token = config.mask_first_token
922
+ self.pool_with_global = config.pool_with_global
923
+
924
+ def forward(
925
+ self,
926
+ hidden_states: torch.Tensor,
927
+ attention_mask: Optional[torch.FloatTensor] = None,
928
+ head_mask: Optional[torch.FloatTensor] = None,
929
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
930
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
931
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
932
+ use_cache: Optional[bool] = None,
933
+ output_attentions: Optional[bool] = False,
934
+ output_hidden_states: Optional[bool] = False,
935
+ return_dict: Optional[bool] = True,
936
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
937
+
938
+ mask_value = torch.finfo(attention_mask.dtype).min
939
+ n, _, __, t = attention_mask.size()
940
+
941
+ if not (self.config.is_decoder and encoder_hidden_states is not None):
942
+
943
+ b = self.block_size * 2
944
+ pad = t % self.block_size
945
+
946
+ # Check if t is multiple of block_size and pad
947
+ if self.adaptive and t > b and pad > 0:
948
+ pad_length = self.block_size - pad
949
+ hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
950
+ attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=mask_value)
951
+
952
+ if self.mask_first_token:
953
+ attention_mask[..., 0] = mask_value
954
+
955
+ encoder_outputs = super().forward(
956
+ hidden_states=hidden_states,
957
+ attention_mask=attention_mask,
958
+ head_mask=head_mask,
959
+ encoder_hidden_states=encoder_hidden_states,
960
+ encoder_attention_mask=encoder_attention_mask,
961
+ past_key_values=past_key_values,
962
+ use_cache=use_cache,
963
+ output_attentions=output_attentions,
964
+ output_hidden_states=output_hidden_states,
965
+ return_dict=return_dict
966
+ )
967
+
968
+ sequence_output = encoder_outputs[0]
969
+ if self.pool_with_global:
970
+ sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
971
+
972
+ # Adapt sequence to initial shape
973
+ sequence_output = sequence_output[..., self.num_global_tokens: t + self.num_global_tokens, :]
974
+
975
+ if not return_dict:
976
+ return (sequence_output, ) + encoder_outputs[1:]
977
+
978
+ encoder_outputs.last_hidden_state = sequence_output
979
+ return encoder_outputs
980
+
981
+ class LSGBertPreTrainedModel(BertPreTrainedModel):
982
+ """
983
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
984
+ models.
985
+ """
986
+
987
+ config_class = LSGBertConfig
988
+
989
+ def _set_gradient_checkpointing(self, module, value=False):
990
+ if isinstance(module, (BertEncoder, LSGBertEncoder)):
991
+ module.gradient_checkpointing = value
992
+
993
+
994
+ class LSGBertModel(LSGBertPreTrainedModel, BertModel):
995
+ """
996
+ This class overrides :class:`~transformers.BertModel`. Please check the superclass for the appropriate
997
+ documentation alongside usage examples.
998
+ """
999
+
1000
+ def __init__(self, config, add_pooling_layer=True):
1001
+
1002
+ LSGBertPreTrainedModel.__init__(self, config)
1003
+
1004
+ self.config = config
1005
+
1006
+ self.embeddings = LSGBertEmbeddings(config)
1007
+ self.encoder = LSGBertEncoder(config)
1008
+ self.pooler = BertPooler(config) if add_pooling_layer else None
1009
+
1010
+ if config.add_cross_attention:
1011
+ logger.warning(
1012
+ "Cross attention is computed using full attention since it is not LSG compatible."
1013
+ )
1014
+
1015
+ # Initialize weights and apply final processing
1016
+ self.post_init()
1017
+
1018
+ def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
1019
+
1020
+ # Do not rely on original triangular mask from BERT/RoBERTa for causalLM
1021
+ if attention_mask.dim() == 3:
1022
+ extended_attention_mask = attention_mask[:, None, :, :]
1023
+ elif attention_mask.dim() == 2:
1024
+ extended_attention_mask = attention_mask[:, None, None, :]
1025
+ else:
1026
+ raise ValueError(
1027
+ f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1028
+ )
1029
+
1030
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
1031
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(extended_attention_mask.dtype).min
1032
+
1033
+ return extended_attention_mask
1034
+
1035
+
1036
+ class LSGBertForPreTraining(LSGBertPreTrainedModel, BertForPreTraining):
1037
+
1038
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1039
+
1040
+ def __init__(self, config):
1041
+
1042
+ LSGBertPreTrainedModel.__init__(self, config)
1043
+
1044
+ self.bert = LSGBertModel(config)
1045
+ self.cls = BertPreTrainingHeads(config)
1046
+
1047
+ # Initialize weights and apply final processing
1048
+ self.post_init()
1049
+
1050
+
1051
+ class LSGBertLMHeadModel(LSGBertPreTrainedModel, BertLMHeadModel):
1052
+
1053
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1054
+
1055
+ def __init__(self, config):
1056
+
1057
+ LSGBertPreTrainedModel.__init__(self, config)
1058
+
1059
+ if not config.is_decoder:
1060
+ logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
1061
+
1062
+ self.bert = LSGBertModel(config, add_pooling_layer=False)
1063
+ self.cls = BertOnlyMLMHead(config)
1064
+
1065
+ # Initialize weights and apply final processing
1066
+ self.post_init()
1067
+
1068
+
1069
+ class LSGBertForMaskedLM(LSGBertPreTrainedModel, BertForMaskedLM):
1070
+ """
1071
+ This class overrides :class:`~transformers.BertForMaskedLM`. Please check the superclass for the appropriate
1072
+ documentation alongside usage examples.
1073
+ """
1074
+
1075
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1076
+
1077
+ def __init__(self, config):
1078
+
1079
+ LSGBertPreTrainedModel.__init__(self, config)
1080
+
1081
+ if config.is_decoder:
1082
+ logger.warning(
1083
+ "If you want to use `LSGBertForMaskedLM` make sure `config.is_decoder=False` for "
1084
+ "bi-directional self-attention."
1085
+ )
1086
+
1087
+ self.bert = LSGBertModel(config, add_pooling_layer=False)
1088
+ self.cls = BertOnlyMLMHead(config)
1089
+
1090
+ # Initialize weights and apply final processing
1091
+ self.post_init()
1092
+
1093
+
1094
+ class LSGBertForNextSentencePrediction(LSGBertPreTrainedModel, BertForNextSentencePrediction):
1095
+
1096
+ def __init__(self, config):
1097
+
1098
+ LSGBertPreTrainedModel.__init__(self, config)
1099
+
1100
+ self.bert = LSGBertModel(config)
1101
+ self.cls = BertOnlyNSPHead(config)
1102
+
1103
+ # Initialize weights and apply final processing
1104
+ self.post_init()
1105
+
1106
+
1107
+ class LSGBertForSequenceClassification(LSGBertPreTrainedModel, BertForSequenceClassification):
1108
+ """
1109
+ This class overrides :class:`~transformers.BertForSequenceClassification`. Please check the superclass for the
1110
+ appropriate documentation alongside usage examples.
1111
+ """
1112
+
1113
+ def __init__(self, config):
1114
+
1115
+ LSGBertPreTrainedModel.__init__(self, config)
1116
+
1117
+ self.num_labels = config.num_labels
1118
+ self.config = config
1119
+
1120
+ self.bert = LSGBertModel(config)
1121
+ classifier_dropout = (
1122
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1123
+ )
1124
+ self.dropout = nn.Dropout(classifier_dropout)
1125
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1126
+
1127
+ # Initialize weights and apply final processing
1128
+ self.post_init()
1129
+
1130
+
1131
+ class LSGBertForMultipleChoice(LSGBertPreTrainedModel, BertForMultipleChoice):
1132
+ """
1133
+ This class overrides :class:`~transformers.BertForMultipleChoice`. Please check the superclass for the
1134
+ appropriate documentation alongside usage examples.
1135
+ """
1136
+
1137
+ def __init__(self, config):
1138
+
1139
+ LSGBertPreTrainedModel.__init__(self, config)
1140
+
1141
+ self.bert = LSGBertModel(config)
1142
+ classifier_dropout = (
1143
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1144
+ )
1145
+ self.dropout = nn.Dropout(classifier_dropout)
1146
+ self.classifier = nn.Linear(config.hidden_size, 1)
1147
+
1148
+ # Initialize weights and apply final processing
1149
+ self.post_init()
1150
+
1151
+
1152
+ class LSGBertForTokenClassification(LSGBertPreTrainedModel, BertForTokenClassification):
1153
+ """
1154
+ This class overrides :class:`~transformers.BertForTokenClassification`. Please check the superclass for the
1155
+ appropriate documentation alongside usage examples.
1156
+ """
1157
+
1158
+ def __init__(self, config):
1159
+
1160
+ LSGBertPreTrainedModel.__init__(self, config)
1161
+
1162
+ self.num_labels = config.num_labels
1163
+
1164
+ self.bert = LSGBertModel(config, add_pooling_layer=False)
1165
+ classifier_dropout = (
1166
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1167
+ )
1168
+ self.dropout = nn.Dropout(classifier_dropout)
1169
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1170
+
1171
+ # Initialize weights and apply final processing
1172
+ self.post_init()
1173
+
1174
+
1175
+ class LSGBertForQuestionAnswering(LSGBertPreTrainedModel, BertForQuestionAnswering):
1176
+ """
1177
+ This class overrides :class:`~transformers.BertForQuestionAnswering`. Please check the superclass for the
1178
+ appropriate documentation alongside usage examples.
1179
+ """
1180
+
1181
+ def __init__(self, config):
1182
+
1183
+ LSGBertPreTrainedModel.__init__(self, config)
1184
+
1185
+ self.num_labels = config.num_labels
1186
+
1187
+ self.bert = LSGBertModel(config, add_pooling_layer=False)
1188
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1189
+
1190
+ # Initialize weights and apply final processing
1191
+ self.post_init()
1192
+
1193
+
1194
+ def str_to_class(classname):
1195
+ return getattr(sys.modules[__name__], classname)
1196
+
1197
+ # Register model in Auto API
1198
+ try:
1199
+ LSGBertConfig.register_for_auto_class()
1200
+ for key, value in AUTO_MAP.items():
1201
+ str_to_class(value.split(".")[-1]).register_for_auto_class(key)
1202
+ except:
1203
+ warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
1204
+ warn("Update to transformers >= 4.23.1 to fix.")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a9213044d4d1b74b0feae5ce8dd4d33d55b8b4cd61f34a1016ff1cf991ef8e
3
+ size 477757229