edumunozsala
commited on
Commit
·
2b9d925
1
Parent(s):
43d3864
Upload README.md
Browse files
README.md
CHANGED
@@ -81,22 +81,24 @@ The following `bitsandbytes` quantization config was used during training:
|
|
81 |
import torch
|
82 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
|
84 |
-
model_id = "
|
85 |
|
86 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
87 |
|
88 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
89 |
|
90 |
-
|
|
|
91 |
|
92 |
prompt = f"""### Instruction:
|
93 |
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
94 |
|
95 |
### Task:
|
96 |
-
{
|
97 |
|
98 |
### Input:
|
99 |
-
{
|
100 |
|
101 |
### Response:
|
102 |
"""
|
@@ -107,7 +109,6 @@ outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True
|
|
107 |
|
108 |
print(f"Prompt:\n{prompt}\n")
|
109 |
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
110 |
-
print(f"Ground truth:\n{sample['output']}")
|
111 |
|
112 |
```
|
113 |
|
|
|
81 |
import torch
|
82 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
|
84 |
+
model_id = "edumunozsala/llama-2-7b-int4-python-code-20k"
|
85 |
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model_repo)
|
87 |
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model_repo, load_in_4bit=True, torch_dtype=torch.float16,
|
89 |
+
device_map=device_map)
|
90 |
|
91 |
+
instruction="Write a Python function to display the first and last elements of a list."
|
92 |
+
input=""
|
93 |
|
94 |
prompt = f"""### Instruction:
|
95 |
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
96 |
|
97 |
### Task:
|
98 |
+
{instruction}
|
99 |
|
100 |
### Input:
|
101 |
+
{input}
|
102 |
|
103 |
### Response:
|
104 |
"""
|
|
|
109 |
|
110 |
print(f"Prompt:\n{prompt}\n")
|
111 |
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
|
|
112 |
|
113 |
```
|
114 |
|