TinyLlaMa 1.1B 1431k 4-bit Python Coder πŸ‘©β€πŸ’»

TinyLlaMa 1.1B fine-tuned on the python_code_instructions_18k_alpaca Code instructions dataset by using the Axolot library in 4-bit with PEFT library.

Pretrained description

TinyLlama-1.1B

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, they can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€.

They adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

Training data

python_code_instructions_18k_alpaca

The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.

Training hyperparameters

The following axolot configuration was used during training:

  • load_in_8bit: false

  • load_in_4bit: true

  • strict: false

  • datasets:

    • path: iamtarun/python_code_instructions_18k_alpaca type: alpaca
  • dataset_prepared_path:

  • val_set_size: 0.05

  • output_dir: ./qlora-out

  • adapter: qlora

  • sequence_len: 1096

  • sample_packing: true

  • pad_to_sequence_len: true

  • lora_r: 32

  • lora_alpha: 16

  • lora_dropout: 0.05

  • lora_target_modules:

  • lora_target_linear: true

  • lora_fan_in_fan_out:

  • gradient_accumulation_steps: 1

  • micro_batch_size: 1

  • num_epochs: 2

  • max_steps:

  • optimizer: paged_adamw_32bit

  • lr_scheduler: cosine

  • learning_rate: 0.0002

  • train_on_inputs: false

  • group_by_length: false

  • bf16: false

  • fp16: true

  • tf32: false

  • gradient_checkpointing: true

  • logging_steps: 10

  • flash_attention: false

  • warmup_steps: 10

  • weight_decay: 0.0

Framework versions

  • torch=="2.1.2"
  • flash-attn=="2.5.0"
  • deepspeed=="0.13.1"
  • axolotl=="0.4.0"

Example of usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "edumunozsala/TinyLlama-1431k-python-coder"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, torch_dtype=torch.float16, 
                                             device_map="auto")

instruction="Write a Python function to display the first and last elements of a list."
input=""

prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.

### Task:
{instruction}

### Input:
{input}

### Response:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.3)

print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")

Citation

@misc {edumunozsala_2023,
    author       = { {Eduardo MuΓ±oz} },
    title        = { TinyLlama-1431k-python-coder },
    year         = 2024,
    url          = { https://huggingface.co/edumunozsala/TinyLlama-1431k-python-coder },
    publisher    = { Hugging Face }
}
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edumunozsala/TinyLlama-1431k-python-coder

Quantizations
1 model

Dataset used to train edumunozsala/TinyLlama-1431k-python-coder