simonycl commited on
Commit
b14daa6
1 Parent(s): 81237cc

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: mistralai/Mistral-7B-v0.3
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen
18
+
19
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the openhermes-2.5 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 16
45
+ - total_train_batch_size: 64
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.03
50
+ - num_epochs: 1.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.45.1
59
+ - Pytorch 2.4.0+cu121
60
+ - Datasets 2.21.0
61
+ - Tokenizers 0.20.0
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.999882826231301,
3
+ "total_flos": 1.7902479199415828e+19,
4
+ "train_loss": 0.6576289132237434,
5
+ "train_runtime": 37752.4225,
6
+ "train_samples_per_second": 2.713,
7
+ "train_steps_per_second": 0.042
8
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.3",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.45.1",
25
+ "use_cache": false,
26
+ "vocab_size": 32768
27
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.45.1"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729b805c33da1f3d2c9e754c16b5e72c980cd079132c35bb1442fc3e009b94fd
3
+ size 4949453792
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27efdc661e423688019c738d96875fec3e4c08101594f92b82bdd2f3373cd690
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e6b317efc6d50ca54648cb68fc2d26b562e66043cb07fa4cdff20513d3b855d
3
+ size 4546807800
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14496047104
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.999882826231301,
3
+ "total_flos": 1.7902479199415828e+19,
4
+ "train_loss": 0.6576289132237434,
5
+ "train_runtime": 37752.4225,
6
+ "train_samples_per_second": 2.713,
7
+ "train_steps_per_second": 0.042
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 1600, "loss": 0.7433, "learning_rate": 4.166666666666667e-06, "epoch": 0.006249267663945631, "percentage": 0.62, "elapsed_time": "0:04:29", "remaining_time": "11:53:27"}
2
+ {"current_steps": 20, "total_steps": 1600, "loss": 0.6848, "learning_rate": 8.333333333333334e-06, "epoch": 0.012498535327891263, "percentage": 1.25, "elapsed_time": "0:08:52", "remaining_time": "11:41:43"}
3
+ {"current_steps": 30, "total_steps": 1600, "loss": 0.6722, "learning_rate": 1.25e-05, "epoch": 0.018747802991836895, "percentage": 1.88, "elapsed_time": "0:13:15", "remaining_time": "11:33:47"}
4
+ {"current_steps": 40, "total_steps": 1600, "loss": 0.6924, "learning_rate": 1.6666666666666667e-05, "epoch": 0.024997070655782525, "percentage": 2.5, "elapsed_time": "0:17:40", "remaining_time": "11:29:01"}
5
+ {"current_steps": 50, "total_steps": 1600, "loss": 0.6759, "learning_rate": 1.999991805061211e-05, "epoch": 0.031246338319728156, "percentage": 3.12, "elapsed_time": "0:22:02", "remaining_time": "11:23:05"}
6
+ {"current_steps": 60, "total_steps": 1600, "loss": 0.7484, "learning_rate": 1.999704996306308e-05, "epoch": 0.03749560598367379, "percentage": 3.75, "elapsed_time": "0:26:29", "remaining_time": "11:20:00"}
7
+ {"current_steps": 70, "total_steps": 1600, "loss": 0.7298, "learning_rate": 1.999008574916082e-05, "epoch": 0.04374487364761942, "percentage": 4.38, "elapsed_time": "0:31:00", "remaining_time": "11:17:39"}
8
+ {"current_steps": 80, "total_steps": 1600, "loss": 0.7381, "learning_rate": 1.997902826237712e-05, "epoch": 0.04999414131156505, "percentage": 5.0, "elapsed_time": "0:35:25", "remaining_time": "11:12:59"}
9
+ {"current_steps": 90, "total_steps": 1600, "loss": 0.716, "learning_rate": 1.9963882033334827e-05, "epoch": 0.05624340897551068, "percentage": 5.62, "elapsed_time": "0:39:56", "remaining_time": "11:10:05"}
10
+ {"current_steps": 100, "total_steps": 1600, "loss": 0.713, "learning_rate": 1.9944653267951507e-05, "epoch": 0.06249267663945631, "percentage": 6.25, "elapsed_time": "0:44:25", "remaining_time": "11:06:28"}
11
+ {"current_steps": 110, "total_steps": 1600, "loss": 0.6886, "learning_rate": 1.9921349844896655e-05, "epoch": 0.06874194430340194, "percentage": 6.88, "elapsed_time": "0:49:00", "remaining_time": "11:03:50"}
12
+ {"current_steps": 120, "total_steps": 1600, "loss": 0.7459, "learning_rate": 1.9893981312363563e-05, "epoch": 0.07499121196734758, "percentage": 7.5, "elapsed_time": "0:53:31", "remaining_time": "11:00:07"}
13
+ {"current_steps": 130, "total_steps": 1600, "loss": 0.7131, "learning_rate": 1.9862558884157067e-05, "epoch": 0.0812404796312932, "percentage": 8.12, "elapsed_time": "0:58:02", "remaining_time": "10:56:23"}
14
+ {"current_steps": 140, "total_steps": 1600, "loss": 0.7419, "learning_rate": 1.9827095435098926e-05, "epoch": 0.08748974729523884, "percentage": 8.75, "elapsed_time": "1:02:33", "remaining_time": "10:52:22"}
15
+ {"current_steps": 150, "total_steps": 1600, "loss": 0.7093, "learning_rate": 1.9787605495752528e-05, "epoch": 0.09373901495918448, "percentage": 9.38, "elapsed_time": "1:07:05", "remaining_time": "10:48:37"}
16
+ {"current_steps": 160, "total_steps": 1600, "loss": 0.7162, "learning_rate": 1.9744105246469264e-05, "epoch": 0.0999882826231301, "percentage": 10.0, "elapsed_time": "1:11:36", "remaining_time": "10:44:28"}
17
+ {"current_steps": 170, "total_steps": 1600, "loss": 0.7501, "learning_rate": 1.9696612510758878e-05, "epoch": 0.10623755028707574, "percentage": 10.62, "elapsed_time": "1:16:07", "remaining_time": "10:40:23"}
18
+ {"current_steps": 180, "total_steps": 1600, "loss": 0.7228, "learning_rate": 1.964514674798659e-05, "epoch": 0.11248681795102136, "percentage": 11.25, "elapsed_time": "1:20:36", "remaining_time": "10:35:56"}
19
+ {"current_steps": 190, "total_steps": 1600, "loss": 0.7283, "learning_rate": 1.9589729045399935e-05, "epoch": 0.118736085614967, "percentage": 11.88, "elapsed_time": "1:25:09", "remaining_time": "10:31:56"}
20
+ {"current_steps": 200, "total_steps": 1600, "loss": 0.7464, "learning_rate": 1.953038210948861e-05, "epoch": 0.12498535327891262, "percentage": 12.5, "elapsed_time": "1:29:39", "remaining_time": "10:27:37"}
21
+ {"current_steps": 210, "total_steps": 1600, "loss": 0.721, "learning_rate": 1.9467130256680867e-05, "epoch": 0.13123462094285826, "percentage": 13.12, "elapsed_time": "1:34:10", "remaining_time": "10:23:19"}
22
+ {"current_steps": 220, "total_steps": 1600, "loss": 0.711, "learning_rate": 1.9399999403380266e-05, "epoch": 0.13748388860680388, "percentage": 13.75, "elapsed_time": "1:38:41", "remaining_time": "10:19:01"}
23
+ {"current_steps": 230, "total_steps": 1600, "loss": 0.7296, "learning_rate": 1.932901705534683e-05, "epoch": 0.14373315627074953, "percentage": 14.37, "elapsed_time": "1:43:11", "remaining_time": "10:14:37"}
24
+ {"current_steps": 240, "total_steps": 1600, "loss": 0.7079, "learning_rate": 1.9254212296427043e-05, "epoch": 0.14998242393469516, "percentage": 15.0, "elapsed_time": "1:47:41", "remaining_time": "10:10:16"}
25
+ {"current_steps": 250, "total_steps": 1600, "loss": 0.7231, "learning_rate": 1.9175615776637212e-05, "epoch": 0.15623169159864078, "percentage": 15.62, "elapsed_time": "1:52:14", "remaining_time": "10:06:08"}
26
+ {"current_steps": 260, "total_steps": 1600, "loss": 0.7202, "learning_rate": 1.9093259699605125e-05, "epoch": 0.1624809592625864, "percentage": 16.25, "elapsed_time": "1:58:32", "remaining_time": "10:10:56"}
27
+ {"current_steps": 270, "total_steps": 1600, "loss": 0.7129, "learning_rate": 1.900717780937514e-05, "epoch": 0.16873022692653206, "percentage": 16.88, "elapsed_time": "2:02:48", "remaining_time": "10:04:55"}
28
+ {"current_steps": 280, "total_steps": 1600, "loss": 0.7142, "learning_rate": 1.8917405376582144e-05, "epoch": 0.17497949459047768, "percentage": 17.5, "elapsed_time": "2:07:05", "remaining_time": "9:59:07"}
29
+ {"current_steps": 290, "total_steps": 1600, "loss": 0.7168, "learning_rate": 1.8823979183999965e-05, "epoch": 0.1812287622544233, "percentage": 18.12, "elapsed_time": "2:11:22", "remaining_time": "9:53:25"}
30
+ {"current_steps": 300, "total_steps": 1600, "loss": 0.7209, "learning_rate": 1.8726937511470247e-05, "epoch": 0.18747802991836895, "percentage": 18.75, "elapsed_time": "2:15:39", "remaining_time": "9:47:49"}
31
+ {"current_steps": 310, "total_steps": 1600, "loss": 0.7278, "learning_rate": 1.8626320120217922e-05, "epoch": 0.19372729758231458, "percentage": 19.38, "elapsed_time": "2:19:53", "remaining_time": "9:42:07"}
32
+ {"current_steps": 320, "total_steps": 1600, "loss": 0.7229, "learning_rate": 1.8522168236559693e-05, "epoch": 0.1999765652462602, "percentage": 20.0, "elapsed_time": "2:24:04", "remaining_time": "9:36:16"}
33
+ {"current_steps": 330, "total_steps": 1600, "loss": 0.7003, "learning_rate": 1.8414524535012244e-05, "epoch": 0.20622583291020583, "percentage": 20.62, "elapsed_time": "2:28:16", "remaining_time": "9:30:37"}
34
+ {"current_steps": 340, "total_steps": 1600, "loss": 0.729, "learning_rate": 1.8303433120807043e-05, "epoch": 0.21247510057415148, "percentage": 21.25, "elapsed_time": "2:32:28", "remaining_time": "9:25:02"}
35
+ {"current_steps": 350, "total_steps": 1600, "loss": 0.7437, "learning_rate": 1.8188939511818965e-05, "epoch": 0.2187243682380971, "percentage": 21.88, "elapsed_time": "2:36:43", "remaining_time": "9:19:42"}
36
+ {"current_steps": 360, "total_steps": 1600, "loss": 0.7101, "learning_rate": 1.8071090619916095e-05, "epoch": 0.22497363590204272, "percentage": 22.5, "elapsed_time": "2:40:54", "remaining_time": "9:14:15"}
37
+ {"current_steps": 370, "total_steps": 1600, "loss": 0.7297, "learning_rate": 1.7949934731738348e-05, "epoch": 0.23122290356598835, "percentage": 23.12, "elapsed_time": "2:45:09", "remaining_time": "9:09:01"}
38
+ {"current_steps": 380, "total_steps": 1600, "loss": 0.7275, "learning_rate": 1.7825521488912833e-05, "epoch": 0.237472171229934, "percentage": 23.75, "elapsed_time": "2:49:20", "remaining_time": "9:03:41"}
39
+ {"current_steps": 390, "total_steps": 1600, "loss": 0.7103, "learning_rate": 1.7697901867713997e-05, "epoch": 0.24372143889387962, "percentage": 24.38, "elapsed_time": "2:53:29", "remaining_time": "8:58:15"}
40
+ {"current_steps": 400, "total_steps": 1600, "loss": 0.6981, "learning_rate": 1.7567128158176955e-05, "epoch": 0.24997070655782525, "percentage": 25.0, "elapsed_time": "2:57:41", "remaining_time": "8:53:04"}
41
+ {"current_steps": 410, "total_steps": 1600, "loss": 0.7015, "learning_rate": 1.7433253942672497e-05, "epoch": 0.2562199742217709, "percentage": 25.62, "elapsed_time": "3:01:55", "remaining_time": "8:48:02"}
42
+ {"current_steps": 420, "total_steps": 1600, "loss": 0.7242, "learning_rate": 1.7296334073952606e-05, "epoch": 0.2624692418857165, "percentage": 26.25, "elapsed_time": "3:06:08", "remaining_time": "8:42:57"}
43
+ {"current_steps": 430, "total_steps": 1600, "loss": 0.7115, "learning_rate": 1.7156424652675433e-05, "epoch": 0.26871850954966214, "percentage": 26.88, "elapsed_time": "3:10:18", "remaining_time": "8:37:49"}
44
+ {"current_steps": 440, "total_steps": 1600, "loss": 0.6912, "learning_rate": 1.7013583004418994e-05, "epoch": 0.27496777721360777, "percentage": 27.5, "elapsed_time": "3:14:29", "remaining_time": "8:32:45"}
45
+ {"current_steps": 450, "total_steps": 1600, "loss": 0.7074, "learning_rate": 1.6867867656192946e-05, "epoch": 0.2812170448775534, "percentage": 28.12, "elapsed_time": "3:18:43", "remaining_time": "8:27:51"}
46
+ {"current_steps": 460, "total_steps": 1600, "loss": 0.7048, "learning_rate": 1.6719338312458123e-05, "epoch": 0.28746631254149907, "percentage": 28.75, "elapsed_time": "3:23:01", "remaining_time": "8:23:09"}
47
+ {"current_steps": 470, "total_steps": 1600, "loss": 0.7085, "learning_rate": 1.656805583066361e-05, "epoch": 0.2937155802054447, "percentage": 29.38, "elapsed_time": "3:27:20", "remaining_time": "8:18:31"}
48
+ {"current_steps": 480, "total_steps": 1600, "loss": 0.6897, "learning_rate": 1.6414082196311402e-05, "epoch": 0.2999648478693903, "percentage": 30.0, "elapsed_time": "3:31:37", "remaining_time": "8:13:48"}
49
+ {"current_steps": 490, "total_steps": 1600, "loss": 0.6941, "learning_rate": 1.6257480497558873e-05, "epoch": 0.30621411553333594, "percentage": 30.63, "elapsed_time": "3:35:51", "remaining_time": "8:08:58"}
50
+ {"current_steps": 500, "total_steps": 1600, "loss": 0.7061, "learning_rate": 1.6098314899369446e-05, "epoch": 0.31246338319728156, "percentage": 31.25, "elapsed_time": "3:40:02", "remaining_time": "8:04:05"}
51
+ {"current_steps": 510, "total_steps": 1600, "loss": 0.6958, "learning_rate": 1.5936650617222063e-05, "epoch": 0.3187126508612272, "percentage": 31.87, "elapsed_time": "3:44:15", "remaining_time": "7:59:18"}
52
+ {"current_steps": 520, "total_steps": 1600, "loss": 0.7177, "learning_rate": 1.5772553890390196e-05, "epoch": 0.3249619185251728, "percentage": 32.5, "elapsed_time": "3:50:04", "remaining_time": "7:57:51"}
53
+ {"current_steps": 530, "total_steps": 1600, "loss": 0.6803, "learning_rate": 1.560609195480142e-05, "epoch": 0.3312111861891185, "percentage": 33.12, "elapsed_time": "3:53:31", "remaining_time": "7:51:26"}
54
+ {"current_steps": 540, "total_steps": 1600, "loss": 0.6694, "learning_rate": 1.5437333015488586e-05, "epoch": 0.3374604538530641, "percentage": 33.75, "elapsed_time": "3:57:00", "remaining_time": "7:45:13"}
55
+ {"current_steps": 550, "total_steps": 1600, "loss": 0.6773, "learning_rate": 1.526634621864395e-05, "epoch": 0.34370972151700974, "percentage": 34.38, "elapsed_time": "4:00:31", "remaining_time": "7:39:10"}
56
+ {"current_steps": 560, "total_steps": 1600, "loss": 0.7048, "learning_rate": 1.5093201623287631e-05, "epoch": 0.34995898918095536, "percentage": 35.0, "elapsed_time": "4:04:01", "remaining_time": "7:33:10"}
57
+ {"current_steps": 570, "total_steps": 1600, "loss": 0.686, "learning_rate": 1.4917970172562122e-05, "epoch": 0.356208256844901, "percentage": 35.62, "elapsed_time": "4:07:32", "remaining_time": "7:27:18"}
58
+ {"current_steps": 580, "total_steps": 1600, "loss": 0.6911, "learning_rate": 1.4740723664664483e-05, "epoch": 0.3624575245088466, "percentage": 36.25, "elapsed_time": "4:11:02", "remaining_time": "7:21:28"}
59
+ {"current_steps": 590, "total_steps": 1600, "loss": 0.6828, "learning_rate": 1.4561534723428205e-05, "epoch": 0.36870679217279223, "percentage": 36.88, "elapsed_time": "4:14:30", "remaining_time": "7:15:41"}
60
+ {"current_steps": 600, "total_steps": 1600, "loss": 0.6636, "learning_rate": 1.4380476768566825e-05, "epoch": 0.3749560598367379, "percentage": 37.5, "elapsed_time": "4:18:00", "remaining_time": "7:10:00"}
61
+ {"current_steps": 610, "total_steps": 1600, "loss": 0.6902, "learning_rate": 1.4197623985591373e-05, "epoch": 0.38120532750068353, "percentage": 38.12, "elapsed_time": "4:21:30", "remaining_time": "7:04:25"}
62
+ {"current_steps": 620, "total_steps": 1600, "loss": 0.6795, "learning_rate": 1.4013051295414108e-05, "epoch": 0.38745459516462916, "percentage": 38.75, "elapsed_time": "4:24:56", "remaining_time": "6:58:46"}
63
+ {"current_steps": 630, "total_steps": 1600, "loss": 0.7005, "learning_rate": 1.3826834323650899e-05, "epoch": 0.3937038628285748, "percentage": 39.38, "elapsed_time": "4:28:23", "remaining_time": "6:53:13"}
64
+ {"current_steps": 640, "total_steps": 1600, "loss": 0.6789, "learning_rate": 1.3639049369634878e-05, "epoch": 0.3999531304925204, "percentage": 40.0, "elapsed_time": "4:31:48", "remaining_time": "6:47:42"}
65
+ {"current_steps": 650, "total_steps": 1600, "loss": 0.6808, "learning_rate": 1.344977337515404e-05, "epoch": 0.406202398156466, "percentage": 40.62, "elapsed_time": "4:35:12", "remaining_time": "6:42:13"}
66
+ {"current_steps": 660, "total_steps": 1600, "loss": 0.6798, "learning_rate": 1.3259083892925633e-05, "epoch": 0.41245166582041165, "percentage": 41.25, "elapsed_time": "4:38:35", "remaining_time": "6:36:46"}
67
+ {"current_steps": 670, "total_steps": 1600, "loss": 0.6587, "learning_rate": 1.3067059054820184e-05, "epoch": 0.41870093348435733, "percentage": 41.88, "elapsed_time": "4:42:00", "remaining_time": "6:31:26"}
68
+ {"current_steps": 680, "total_steps": 1600, "loss": 0.6699, "learning_rate": 1.2873777539848284e-05, "epoch": 0.42495020114830295, "percentage": 42.5, "elapsed_time": "4:45:25", "remaining_time": "6:26:10"}
69
+ {"current_steps": 690, "total_steps": 1600, "loss": 0.6644, "learning_rate": 1.2679318541923131e-05, "epoch": 0.4311994688122486, "percentage": 43.12, "elapsed_time": "4:48:52", "remaining_time": "6:20:59"}
70
+ {"current_steps": 700, "total_steps": 1600, "loss": 0.68, "learning_rate": 1.248376173741215e-05, "epoch": 0.4374487364761942, "percentage": 43.75, "elapsed_time": "4:52:22", "remaining_time": "6:15:54"}
71
+ {"current_steps": 710, "total_steps": 1600, "loss": 0.684, "learning_rate": 1.2287187252490914e-05, "epoch": 0.4436980041401398, "percentage": 44.38, "elapsed_time": "4:55:50", "remaining_time": "6:10:51"}
72
+ {"current_steps": 720, "total_steps": 1600, "loss": 0.6515, "learning_rate": 1.2089675630312755e-05, "epoch": 0.44994727180408545, "percentage": 45.0, "elapsed_time": "4:59:19", "remaining_time": "6:05:50"}
73
+ {"current_steps": 730, "total_steps": 1600, "loss": 0.6609, "learning_rate": 1.1891307798007536e-05, "epoch": 0.45619653946803107, "percentage": 45.62, "elapsed_time": "5:02:47", "remaining_time": "6:00:51"}
74
+ {"current_steps": 740, "total_steps": 1600, "loss": 0.6801, "learning_rate": 1.1692165033523117e-05, "epoch": 0.4624458071319767, "percentage": 46.25, "elapsed_time": "5:06:15", "remaining_time": "5:55:55"}
75
+ {"current_steps": 750, "total_steps": 1600, "loss": 0.6831, "learning_rate": 1.1492328932323022e-05, "epoch": 0.4686950747959224, "percentage": 46.88, "elapsed_time": "5:09:42", "remaining_time": "5:51:00"}
76
+ {"current_steps": 760, "total_steps": 1600, "loss": 0.6725, "learning_rate": 1.1291881373954066e-05, "epoch": 0.474944342459868, "percentage": 47.5, "elapsed_time": "5:13:13", "remaining_time": "5:46:11"}
77
+ {"current_steps": 770, "total_steps": 1600, "loss": 0.6394, "learning_rate": 1.109090448849755e-05, "epoch": 0.4811936101238136, "percentage": 48.12, "elapsed_time": "5:18:55", "remaining_time": "5:43:46"}
78
+ {"current_steps": 780, "total_steps": 1600, "loss": 0.6682, "learning_rate": 1.088948062291783e-05, "epoch": 0.48744287778775924, "percentage": 48.75, "elapsed_time": "5:22:24", "remaining_time": "5:38:56"}
79
+ {"current_steps": 790, "total_steps": 1600, "loss": 0.6353, "learning_rate": 1.0687692307321984e-05, "epoch": 0.49369214545170487, "percentage": 49.38, "elapsed_time": "5:25:50", "remaining_time": "5:34:04"}
80
+ {"current_steps": 800, "total_steps": 1600, "loss": 0.6433, "learning_rate": 1.0485622221144485e-05, "epoch": 0.4999414131156505, "percentage": 50.0, "elapsed_time": "5:29:16", "remaining_time": "5:29:16"}
81
+ {"current_steps": 810, "total_steps": 1600, "loss": 0.6719, "learning_rate": 1.0283353159270644e-05, "epoch": 0.5061906807795962, "percentage": 50.62, "elapsed_time": "5:32:42", "remaining_time": "5:24:29"}
82
+ {"current_steps": 820, "total_steps": 1600, "loss": 0.6576, "learning_rate": 1.0080967998112787e-05, "epoch": 0.5124399484435418, "percentage": 51.25, "elapsed_time": "5:36:09", "remaining_time": "5:19:45"}
83
+ {"current_steps": 830, "total_steps": 1600, "loss": 0.6547, "learning_rate": 9.878549661653013e-06, "epoch": 0.5186892161074874, "percentage": 51.88, "elapsed_time": "5:39:38", "remaining_time": "5:15:05"}
84
+ {"current_steps": 840, "total_steps": 1600, "loss": 0.6361, "learning_rate": 9.676181087466444e-06, "epoch": 0.524938483771433, "percentage": 52.5, "elapsed_time": "5:43:07", "remaining_time": "5:10:26"}
85
+ {"current_steps": 850, "total_steps": 1600, "loss": 0.6497, "learning_rate": 9.473945192738933e-06, "epoch": 0.5311877514353787, "percentage": 53.12, "elapsed_time": "5:46:34", "remaining_time": "5:05:48"}
86
+ {"current_steps": 860, "total_steps": 1600, "loss": 0.6654, "learning_rate": 9.27192484029312e-06, "epoch": 0.5374370190993243, "percentage": 53.75, "elapsed_time": "5:50:01", "remaining_time": "5:01:10"}
87
+ {"current_steps": 870, "total_steps": 1600, "loss": 0.6397, "learning_rate": 9.070202804636745e-06, "epoch": 0.5436862867632699, "percentage": 54.37, "elapsed_time": "5:53:27", "remaining_time": "4:56:34"}
88
+ {"current_steps": 880, "total_steps": 1600, "loss": 0.6603, "learning_rate": 8.868861738047158e-06, "epoch": 0.5499355544272155, "percentage": 55.0, "elapsed_time": "5:56:52", "remaining_time": "4:51:59"}
89
+ {"current_steps": 890, "total_steps": 1600, "loss": 0.6556, "learning_rate": 8.667984136705927e-06, "epoch": 0.5561848220911612, "percentage": 55.62, "elapsed_time": "6:00:20", "remaining_time": "4:47:28"}
90
+ {"current_steps": 900, "total_steps": 1600, "loss": 0.6258, "learning_rate": 8.46765230689737e-06, "epoch": 0.5624340897551068, "percentage": 56.25, "elapsed_time": "6:03:48", "remaining_time": "4:42:58"}
91
+ {"current_steps": 910, "total_steps": 1600, "loss": 0.6472, "learning_rate": 8.267948331284923e-06, "epoch": 0.5686833574190524, "percentage": 56.88, "elapsed_time": "6:07:20", "remaining_time": "4:38:31"}
92
+ {"current_steps": 920, "total_steps": 1600, "loss": 0.6226, "learning_rate": 8.068954035279121e-06, "epoch": 0.5749326250829981, "percentage": 57.5, "elapsed_time": "6:10:51", "remaining_time": "4:34:06"}
93
+ {"current_steps": 930, "total_steps": 1600, "loss": 0.617, "learning_rate": 7.870750953510983e-06, "epoch": 0.5811818927469438, "percentage": 58.13, "elapsed_time": "6:14:16", "remaining_time": "4:29:38"}
94
+ {"current_steps": 940, "total_steps": 1600, "loss": 0.633, "learning_rate": 7.673420296424541e-06, "epoch": 0.5874311604108894, "percentage": 58.75, "elapsed_time": "6:17:44", "remaining_time": "4:25:13"}
95
+ {"current_steps": 950, "total_steps": 1600, "loss": 0.6312, "learning_rate": 7.4770429170022e-06, "epoch": 0.593680428074835, "percentage": 59.38, "elapsed_time": "6:21:07", "remaining_time": "4:20:46"}
96
+ {"current_steps": 960, "total_steps": 1600, "loss": 0.6252, "learning_rate": 7.2816992776365714e-06, "epoch": 0.5999296957387806, "percentage": 60.0, "elapsed_time": "6:24:30", "remaining_time": "4:16:20"}
97
+ {"current_steps": 970, "total_steps": 1600, "loss": 0.634, "learning_rate": 7.08746941716232e-06, "epoch": 0.6061789634027263, "percentage": 60.62, "elapsed_time": "6:27:58", "remaining_time": "4:11:58"}
98
+ {"current_steps": 980, "total_steps": 1600, "loss": 0.6216, "learning_rate": 6.894432918061579e-06, "epoch": 0.6124282310666719, "percentage": 61.25, "elapsed_time": "6:31:26", "remaining_time": "4:07:38"}
99
+ {"current_steps": 990, "total_steps": 1600, "loss": 0.643, "learning_rate": 6.702668873856339e-06, "epoch": 0.6186774987306175, "percentage": 61.88, "elapsed_time": "6:34:53", "remaining_time": "4:03:18"}
100
+ {"current_steps": 1000, "total_steps": 1600, "loss": 0.6409, "learning_rate": 6.5122558567011775e-06, "epoch": 0.6249267663945631, "percentage": 62.5, "elapsed_time": "6:38:22", "remaining_time": "3:59:01"}
101
+ {"current_steps": 1010, "total_steps": 1600, "loss": 0.6418, "learning_rate": 6.323271885189636e-06, "epoch": 0.6311760340585088, "percentage": 63.12, "elapsed_time": "6:41:51", "remaining_time": "3:54:45"}
102
+ {"current_steps": 1020, "total_steps": 1600, "loss": 0.635, "learning_rate": 6.135794392387353e-06, "epoch": 0.6374253017224544, "percentage": 63.75, "elapsed_time": "6:45:21", "remaining_time": "3:50:29"}
103
+ {"current_steps": 1030, "total_steps": 1600, "loss": 0.6326, "learning_rate": 5.949900194105167e-06, "epoch": 0.6436745693864, "percentage": 64.38, "elapsed_time": "6:51:07", "remaining_time": "3:47:31"}
104
+ {"current_steps": 1040, "total_steps": 1600, "loss": 0.6338, "learning_rate": 5.765665457425102e-06, "epoch": 0.6499238370503456, "percentage": 65.0, "elapsed_time": "6:54:36", "remaining_time": "3:43:15"}
105
+ {"current_steps": 1050, "total_steps": 1600, "loss": 0.6262, "learning_rate": 5.5831656694921465e-06, "epoch": 0.6561731047142912, "percentage": 65.62, "elapsed_time": "6:58:04", "remaining_time": "3:38:59"}
106
+ {"current_steps": 1060, "total_steps": 1600, "loss": 0.6421, "learning_rate": 5.40247560658467e-06, "epoch": 0.662422372378237, "percentage": 66.25, "elapsed_time": "7:01:29", "remaining_time": "3:34:43"}
107
+ {"current_steps": 1070, "total_steps": 1600, "loss": 0.6166, "learning_rate": 5.223669303476041e-06, "epoch": 0.6686716400421826, "percentage": 66.88, "elapsed_time": "7:04:55", "remaining_time": "3:30:28"}
108
+ {"current_steps": 1080, "total_steps": 1600, "loss": 0.6033, "learning_rate": 5.046820023100129e-06, "epoch": 0.6749209077061282, "percentage": 67.5, "elapsed_time": "7:08:22", "remaining_time": "3:26:15"}
109
+ {"current_steps": 1090, "total_steps": 1600, "loss": 0.6292, "learning_rate": 4.872000226533001e-06, "epoch": 0.6811701753700738, "percentage": 68.12, "elapsed_time": "7:11:50", "remaining_time": "3:22:03"}
110
+ {"current_steps": 1100, "total_steps": 1600, "loss": 0.6238, "learning_rate": 4.699281543303222e-06, "epoch": 0.6874194430340195, "percentage": 68.75, "elapsed_time": "7:15:15", "remaining_time": "3:17:50"}
111
+ {"current_steps": 1110, "total_steps": 1600, "loss": 0.609, "learning_rate": 4.528734742042803e-06, "epoch": 0.6936687106979651, "percentage": 69.38, "elapsed_time": "7:18:40", "remaining_time": "3:13:39"}
112
+ {"current_steps": 1120, "total_steps": 1600, "loss": 0.6116, "learning_rate": 4.360429701490935e-06, "epoch": 0.6999179783619107, "percentage": 70.0, "elapsed_time": "7:22:05", "remaining_time": "3:09:27"}
113
+ {"current_steps": 1130, "total_steps": 1600, "loss": 0.6217, "learning_rate": 4.194435381862343e-06, "epoch": 0.7061672460258563, "percentage": 70.62, "elapsed_time": "7:25:30", "remaining_time": "3:05:18"}
114
+ {"current_steps": 1140, "total_steps": 1600, "loss": 0.6247, "learning_rate": 4.03081979659195e-06, "epoch": 0.712416513689802, "percentage": 71.25, "elapsed_time": "7:29:00", "remaining_time": "3:01:10"}
115
+ {"current_steps": 1150, "total_steps": 1600, "loss": 0.6092, "learning_rate": 3.869649984467504e-06, "epoch": 0.7186657813537476, "percentage": 71.88, "elapsed_time": "7:32:33", "remaining_time": "2:57:05"}
116
+ {"current_steps": 1160, "total_steps": 1600, "loss": 0.6063, "learning_rate": 3.7109919821615546e-06, "epoch": 0.7249150490176932, "percentage": 72.5, "elapsed_time": "7:36:04", "remaining_time": "2:52:59"}
117
+ {"current_steps": 1170, "total_steps": 1600, "loss": 0.6154, "learning_rate": 3.5549107971739905e-06, "epoch": 0.7311643166816388, "percentage": 73.12, "elapsed_time": "7:39:34", "remaining_time": "2:48:54"}
118
+ {"current_steps": 1180, "total_steps": 1600, "loss": 0.6119, "learning_rate": 3.4014703811963024e-06, "epoch": 0.7374135843455845, "percentage": 73.75, "elapsed_time": "7:43:05", "remaining_time": "2:44:49"}
119
+ {"current_steps": 1190, "total_steps": 1600, "loss": 0.6043, "learning_rate": 3.2507336039084315e-06, "epoch": 0.7436628520095301, "percentage": 74.38, "elapsed_time": "7:46:32", "remaining_time": "2:40:44"}
120
+ {"current_steps": 1200, "total_steps": 1600, "loss": 0.6308, "learning_rate": 3.1027622272189572e-06, "epoch": 0.7499121196734758, "percentage": 75.0, "elapsed_time": "7:49:58", "remaining_time": "2:36:39"}
121
+ {"current_steps": 1210, "total_steps": 1600, "loss": 0.5984, "learning_rate": 2.9576168799591663e-06, "epoch": 0.7561613873374214, "percentage": 75.62, "elapsed_time": "7:53:27", "remaining_time": "2:32:36"}
122
+ {"current_steps": 1220, "total_steps": 1600, "loss": 0.6139, "learning_rate": 2.8153570330413925e-06, "epoch": 0.7624106550013671, "percentage": 76.25, "elapsed_time": "7:57:00", "remaining_time": "2:28:34"}
123
+ {"current_steps": 1230, "total_steps": 1600, "loss": 0.5974, "learning_rate": 2.6760409750917925e-06, "epoch": 0.7686599226653127, "percentage": 76.88, "elapsed_time": "8:00:30", "remaining_time": "2:24:32"}
124
+ {"current_steps": 1240, "total_steps": 1600, "loss": 0.6034, "learning_rate": 2.5397257885675396e-06, "epoch": 0.7749091903292583, "percentage": 77.5, "elapsed_time": "8:04:00", "remaining_time": "2:20:31"}
125
+ {"current_steps": 1250, "total_steps": 1600, "loss": 0.6026, "learning_rate": 2.406467326368237e-06, "epoch": 0.7811584579932039, "percentage": 78.12, "elapsed_time": "8:07:31", "remaining_time": "2:16:30"}
126
+ {"current_steps": 1260, "total_steps": 1600, "loss": 0.6216, "learning_rate": 2.2763201889510987e-06, "epoch": 0.7874077256571496, "percentage": 78.75, "elapsed_time": "8:11:03", "remaining_time": "2:12:30"}
127
+ {"current_steps": 1270, "total_steps": 1600, "loss": 0.6198, "learning_rate": 2.149337701959325e-06, "epoch": 0.7936569933210952, "percentage": 79.38, "elapsed_time": "8:14:35", "remaining_time": "2:08:30"}
128
+ {"current_steps": 1280, "total_steps": 1600, "loss": 0.5838, "learning_rate": 2.025571894372794e-06, "epoch": 0.7999062609850408, "percentage": 80.0, "elapsed_time": "8:18:06", "remaining_time": "2:04:31"}
129
+ {"current_steps": 1290, "total_steps": 1600, "loss": 0.5999, "learning_rate": 1.9050734771900414e-06, "epoch": 0.8061555286489864, "percentage": 80.62, "elapsed_time": "8:24:22", "remaining_time": "2:01:12"}
130
+ {"current_steps": 1300, "total_steps": 1600, "loss": 0.5956, "learning_rate": 1.7878918226502816e-06, "epoch": 0.812404796312932, "percentage": 81.25, "elapsed_time": "8:28:23", "remaining_time": "1:57:19"}
131
+ {"current_steps": 1310, "total_steps": 1600, "loss": 0.6083, "learning_rate": 1.6740749440039262e-06, "epoch": 0.8186540639768777, "percentage": 81.88, "elapsed_time": "8:32:27", "remaining_time": "1:53:26"}
132
+ {"current_steps": 1320, "total_steps": 1600, "loss": 0.5917, "learning_rate": 1.5636694758399563e-06, "epoch": 0.8249033316408233, "percentage": 82.5, "elapsed_time": "8:36:31", "remaining_time": "1:49:33"}
133
+ {"current_steps": 1330, "total_steps": 1600, "loss": 0.5929, "learning_rate": 1.4567206549781699e-06, "epoch": 0.8311525993047689, "percentage": 83.12, "elapsed_time": "8:40:34", "remaining_time": "1:45:40"}
134
+ {"current_steps": 1340, "total_steps": 1600, "loss": 0.5936, "learning_rate": 1.3532723019341376e-06, "epoch": 0.8374018669687147, "percentage": 83.75, "elapsed_time": "8:44:29", "remaining_time": "1:41:46"}
135
+ {"current_steps": 1350, "total_steps": 1600, "loss": 0.5933, "learning_rate": 1.2533668029644751e-06, "epoch": 0.8436511346326603, "percentage": 84.38, "elapsed_time": "8:48:28", "remaining_time": "1:37:52"}
136
+ {"current_steps": 1360, "total_steps": 1600, "loss": 0.5891, "learning_rate": 1.1570450926997657e-06, "epoch": 0.8499004022966059, "percentage": 85.0, "elapsed_time": "8:52:38", "remaining_time": "1:33:59"}
137
+ {"current_steps": 1370, "total_steps": 1600, "loss": 0.5799, "learning_rate": 1.064346637372271e-06, "epoch": 0.8561496699605515, "percentage": 85.62, "elapsed_time": "8:56:35", "remaining_time": "1:30:05"}
138
+ {"current_steps": 1380, "total_steps": 1600, "loss": 0.5994, "learning_rate": 9.753094186453028e-07, "epoch": 0.8623989376244972, "percentage": 86.25, "elapsed_time": "9:00:29", "remaining_time": "1:26:09"}
139
+ {"current_steps": 1390, "total_steps": 1600, "loss": 0.6119, "learning_rate": 8.89969918050847e-07, "epoch": 0.8686482052884428, "percentage": 86.88, "elapsed_time": "9:04:21", "remaining_time": "1:22:14"}
140
+ {"current_steps": 1400, "total_steps": 1600, "loss": 0.5958, "learning_rate": 8.083631020418792e-07, "epoch": 0.8748974729523884, "percentage": 87.5, "elapsed_time": "9:08:16", "remaining_time": "1:18:19"}
141
+ {"current_steps": 1410, "total_steps": 1600, "loss": 0.6025, "learning_rate": 7.305224076654127e-07, "epoch": 0.881146740616334, "percentage": 88.12, "elapsed_time": "9:12:10", "remaining_time": "1:14:24"}
142
+ {"current_steps": 1420, "total_steps": 1600, "loss": 0.5985, "learning_rate": 6.564797288622371e-07, "epoch": 0.8873960082802796, "percentage": 88.75, "elapsed_time": "9:16:06", "remaining_time": "1:10:29"}
143
+ {"current_steps": 1430, "total_steps": 1600, "loss": 0.5992, "learning_rate": 5.86265403398899e-07, "epoch": 0.8936452759442253, "percentage": 89.38, "elapsed_time": "9:20:06", "remaining_time": "1:06:35"}
144
+ {"current_steps": 1440, "total_steps": 1600, "loss": 0.5714, "learning_rate": 5.199082004372958e-07, "epoch": 0.8998945436081709, "percentage": 90.0, "elapsed_time": "9:24:08", "remaining_time": "1:02:40"}
145
+ {"current_steps": 1450, "total_steps": 1600, "loss": 0.5967, "learning_rate": 4.5743530874699293e-07, "epoch": 0.9061438112721165, "percentage": 90.62, "elapsed_time": "9:28:07", "remaining_time": "0:58:46"}
146
+ {"current_steps": 1460, "total_steps": 1600, "loss": 0.5883, "learning_rate": 3.988723255650728e-07, "epoch": 0.9123930789360621, "percentage": 91.25, "elapsed_time": "9:32:07", "remaining_time": "0:54:51"}
147
+ {"current_steps": 1470, "total_steps": 1600, "loss": 0.6041, "learning_rate": 3.442432461080858e-07, "epoch": 0.9186423466000078, "percentage": 91.88, "elapsed_time": "9:36:08", "remaining_time": "0:50:57"}
148
+ {"current_steps": 1480, "total_steps": 1600, "loss": 0.6076, "learning_rate": 2.935704537404083e-07, "epoch": 0.9248916142639534, "percentage": 92.5, "elapsed_time": "9:40:06", "remaining_time": "0:47:02"}
149
+ {"current_steps": 1490, "total_steps": 1600, "loss": 0.593, "learning_rate": 2.468747108030289e-07, "epoch": 0.9311408819278991, "percentage": 93.12, "elapsed_time": "9:44:05", "remaining_time": "0:43:07"}
150
+ {"current_steps": 1500, "total_steps": 1600, "loss": 0.5928, "learning_rate": 2.0417515010652032e-07, "epoch": 0.9373901495918447, "percentage": 93.75, "elapsed_time": "9:48:08", "remaining_time": "0:39:12"}
151
+ {"current_steps": 1510, "total_steps": 1600, "loss": 0.6025, "learning_rate": 1.6548926709168634e-07, "epoch": 0.9436394172557904, "percentage": 94.38, "elapsed_time": "9:52:12", "remaining_time": "0:35:17"}
152
+ {"current_steps": 1520, "total_steps": 1600, "loss": 0.5937, "learning_rate": 1.30832912661093e-07, "epoch": 0.949888684919736, "percentage": 95.0, "elapsed_time": "9:56:10", "remaining_time": "0:31:22"}
153
+ {"current_steps": 1530, "total_steps": 1600, "loss": 0.5874, "learning_rate": 1.0022028668442374e-07, "epoch": 0.9561379525836816, "percentage": 95.62, "elapsed_time": "10:00:04", "remaining_time": "0:27:27"}
154
+ {"current_steps": 1540, "total_steps": 1600, "loss": 0.6099, "learning_rate": 7.366393218031564e-08, "epoch": 0.9623872202476272, "percentage": 96.25, "elapsed_time": "10:06:06", "remaining_time": "0:23:36"}
155
+ {"current_steps": 1550, "total_steps": 1600, "loss": 0.5902, "learning_rate": 5.1174730177064866e-08, "epoch": 0.9686364879115729, "percentage": 96.88, "elapsed_time": "10:09:35", "remaining_time": "0:19:39"}
156
+ {"current_steps": 1560, "total_steps": 1600, "loss": 0.5852, "learning_rate": 3.2761895254306285e-08, "epoch": 0.9748857555755185, "percentage": 97.5, "elapsed_time": "10:13:04", "remaining_time": "0:15:43"}
157
+ {"current_steps": 1570, "total_steps": 1600, "loss": 0.5962, "learning_rate": 1.8432971767488038e-08, "epoch": 0.9811350232394641, "percentage": 98.12, "elapsed_time": "10:16:34", "remaining_time": "0:11:46"}
158
+ {"current_steps": 1580, "total_steps": 1600, "loss": 0.6002, "learning_rate": 8.193830756699773e-09, "epoch": 0.9873842909034097, "percentage": 98.75, "elapsed_time": "10:20:01", "remaining_time": "0:07:50"}
159
+ {"current_steps": 1590, "total_steps": 1600, "loss": 0.5943, "learning_rate": 2.0486675411102165e-09, "epoch": 0.9936335585673554, "percentage": 99.38, "elapsed_time": "10:23:30", "remaining_time": "0:03:55"}
160
+ {"current_steps": 1600, "total_steps": 1600, "loss": 0.5911, "learning_rate": 0.0, "epoch": 0.999882826231301, "percentage": 100.0, "elapsed_time": "10:26:59", "remaining_time": "0:00:00"}
161
+ {"current_steps": 1600, "total_steps": 1600, "epoch": 0.999882826231301, "percentage": 100.0, "elapsed_time": "10:29:11", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.999882826231301,
5
+ "eval_steps": 500,
6
+ "global_step": 1600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006249267663945631,
13
+ "grad_norm": 6.042294502258301,
14
+ "learning_rate": 4.166666666666667e-06,
15
+ "loss": 0.7433,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.012498535327891263,
20
+ "grad_norm": 3.4981777667999268,
21
+ "learning_rate": 8.333333333333334e-06,
22
+ "loss": 0.6848,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.018747802991836895,
27
+ "grad_norm": 7.156867980957031,
28
+ "learning_rate": 1.25e-05,
29
+ "loss": 0.6722,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.024997070655782525,
34
+ "grad_norm": 3.301668167114258,
35
+ "learning_rate": 1.6666666666666667e-05,
36
+ "loss": 0.6924,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.031246338319728156,
41
+ "grad_norm": 2.7308597564697266,
42
+ "learning_rate": 1.999991805061211e-05,
43
+ "loss": 0.6759,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.03749560598367379,
48
+ "grad_norm": 5.730428695678711,
49
+ "learning_rate": 1.999704996306308e-05,
50
+ "loss": 0.7484,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.04374487364761942,
55
+ "grad_norm": 2.7434427738189697,
56
+ "learning_rate": 1.999008574916082e-05,
57
+ "loss": 0.7298,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.04999414131156505,
62
+ "grad_norm": 2.67563533782959,
63
+ "learning_rate": 1.997902826237712e-05,
64
+ "loss": 0.7381,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.05624340897551068,
69
+ "grad_norm": 4.653203010559082,
70
+ "learning_rate": 1.9963882033334827e-05,
71
+ "loss": 0.716,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.06249267663945631,
76
+ "grad_norm": 3.6553049087524414,
77
+ "learning_rate": 1.9944653267951507e-05,
78
+ "loss": 0.713,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.06874194430340194,
83
+ "grad_norm": 3.856987953186035,
84
+ "learning_rate": 1.9921349844896655e-05,
85
+ "loss": 0.6886,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.07499121196734758,
90
+ "grad_norm": 2.80169677734375,
91
+ "learning_rate": 1.9893981312363563e-05,
92
+ "loss": 0.7459,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.0812404796312932,
97
+ "grad_norm": 9.439187049865723,
98
+ "learning_rate": 1.9862558884157067e-05,
99
+ "loss": 0.7131,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.08748974729523884,
104
+ "grad_norm": 3.0188660621643066,
105
+ "learning_rate": 1.9827095435098926e-05,
106
+ "loss": 0.7419,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.09373901495918448,
111
+ "grad_norm": 6.821515083312988,
112
+ "learning_rate": 1.9787605495752528e-05,
113
+ "loss": 0.7093,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.0999882826231301,
118
+ "grad_norm": 3.1190407276153564,
119
+ "learning_rate": 1.9744105246469264e-05,
120
+ "loss": 0.7162,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.10623755028707574,
125
+ "grad_norm": 3.4266233444213867,
126
+ "learning_rate": 1.9696612510758878e-05,
127
+ "loss": 0.7501,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.11248681795102136,
132
+ "grad_norm": 6.012339115142822,
133
+ "learning_rate": 1.964514674798659e-05,
134
+ "loss": 0.7228,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.118736085614967,
139
+ "grad_norm": 2.518491268157959,
140
+ "learning_rate": 1.9589729045399935e-05,
141
+ "loss": 0.7283,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.12498535327891262,
146
+ "grad_norm": 2.739582061767578,
147
+ "learning_rate": 1.953038210948861e-05,
148
+ "loss": 0.7464,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.13123462094285826,
153
+ "grad_norm": 2.70062518119812,
154
+ "learning_rate": 1.9467130256680867e-05,
155
+ "loss": 0.721,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.13748388860680388,
160
+ "grad_norm": 2.4166440963745117,
161
+ "learning_rate": 1.9399999403380266e-05,
162
+ "loss": 0.711,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.14373315627074953,
167
+ "grad_norm": 3.875697374343872,
168
+ "learning_rate": 1.932901705534683e-05,
169
+ "loss": 0.7296,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.14998242393469516,
174
+ "grad_norm": 3.1276426315307617,
175
+ "learning_rate": 1.9254212296427043e-05,
176
+ "loss": 0.7079,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.15623169159864078,
181
+ "grad_norm": 3.067948341369629,
182
+ "learning_rate": 1.9175615776637212e-05,
183
+ "loss": 0.7231,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.1624809592625864,
188
+ "grad_norm": 2.604984760284424,
189
+ "learning_rate": 1.9093259699605125e-05,
190
+ "loss": 0.7202,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.16873022692653206,
195
+ "grad_norm": 2.3994998931884766,
196
+ "learning_rate": 1.900717780937514e-05,
197
+ "loss": 0.7129,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.17497949459047768,
202
+ "grad_norm": 2.617325782775879,
203
+ "learning_rate": 1.8917405376582144e-05,
204
+ "loss": 0.7142,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.1812287622544233,
209
+ "grad_norm": 2.6472878456115723,
210
+ "learning_rate": 1.8823979183999965e-05,
211
+ "loss": 0.7168,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.18747802991836895,
216
+ "grad_norm": 2.1472179889678955,
217
+ "learning_rate": 1.8726937511470247e-05,
218
+ "loss": 0.7209,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.19372729758231458,
223
+ "grad_norm": 2.5548176765441895,
224
+ "learning_rate": 1.8626320120217922e-05,
225
+ "loss": 0.7278,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.1999765652462602,
230
+ "grad_norm": 2.2397587299346924,
231
+ "learning_rate": 1.8522168236559693e-05,
232
+ "loss": 0.7229,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.20622583291020583,
237
+ "grad_norm": 2.72623872756958,
238
+ "learning_rate": 1.8414524535012244e-05,
239
+ "loss": 0.7003,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.21247510057415148,
244
+ "grad_norm": 2.6225929260253906,
245
+ "learning_rate": 1.8303433120807043e-05,
246
+ "loss": 0.729,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.2187243682380971,
251
+ "grad_norm": 4.628861427307129,
252
+ "learning_rate": 1.8188939511818965e-05,
253
+ "loss": 0.7437,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.22497363590204272,
258
+ "grad_norm": 2.2117223739624023,
259
+ "learning_rate": 1.8071090619916095e-05,
260
+ "loss": 0.7101,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.23122290356598835,
265
+ "grad_norm": 2.2710976600646973,
266
+ "learning_rate": 1.7949934731738348e-05,
267
+ "loss": 0.7297,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.237472171229934,
272
+ "grad_norm": 2.2278854846954346,
273
+ "learning_rate": 1.7825521488912833e-05,
274
+ "loss": 0.7275,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.24372143889387962,
279
+ "grad_norm": 2.332300901412964,
280
+ "learning_rate": 1.7697901867713997e-05,
281
+ "loss": 0.7103,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.24997070655782525,
286
+ "grad_norm": 1.9451990127563477,
287
+ "learning_rate": 1.7567128158176955e-05,
288
+ "loss": 0.6981,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.2562199742217709,
293
+ "grad_norm": 2.7532973289489746,
294
+ "learning_rate": 1.7433253942672497e-05,
295
+ "loss": 0.7015,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.2624692418857165,
300
+ "grad_norm": 2.6847236156463623,
301
+ "learning_rate": 1.7296334073952606e-05,
302
+ "loss": 0.7242,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.26871850954966214,
307
+ "grad_norm": 2.6689813137054443,
308
+ "learning_rate": 1.7156424652675433e-05,
309
+ "loss": 0.7115,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.27496777721360777,
314
+ "grad_norm": 2.2913591861724854,
315
+ "learning_rate": 1.7013583004418994e-05,
316
+ "loss": 0.6912,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.2812170448775534,
321
+ "grad_norm": 2.5969536304473877,
322
+ "learning_rate": 1.6867867656192946e-05,
323
+ "loss": 0.7074,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.28746631254149907,
328
+ "grad_norm": 2.246922731399536,
329
+ "learning_rate": 1.6719338312458123e-05,
330
+ "loss": 0.7048,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.2937155802054447,
335
+ "grad_norm": 2.251768112182617,
336
+ "learning_rate": 1.656805583066361e-05,
337
+ "loss": 0.7085,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.2999648478693903,
342
+ "grad_norm": 2.249643325805664,
343
+ "learning_rate": 1.6414082196311402e-05,
344
+ "loss": 0.6897,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.30621411553333594,
349
+ "grad_norm": 1.974482536315918,
350
+ "learning_rate": 1.6257480497558873e-05,
351
+ "loss": 0.6941,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.31246338319728156,
356
+ "grad_norm": 2.1665918827056885,
357
+ "learning_rate": 1.6098314899369446e-05,
358
+ "loss": 0.7061,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.3187126508612272,
363
+ "grad_norm": 2.391334295272827,
364
+ "learning_rate": 1.5936650617222063e-05,
365
+ "loss": 0.6958,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.3249619185251728,
370
+ "grad_norm": 2.047011375427246,
371
+ "learning_rate": 1.5772553890390196e-05,
372
+ "loss": 0.7177,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.3312111861891185,
377
+ "grad_norm": 1.8378033638000488,
378
+ "learning_rate": 1.560609195480142e-05,
379
+ "loss": 0.6803,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.3374604538530641,
384
+ "grad_norm": 2.126997232437134,
385
+ "learning_rate": 1.5437333015488586e-05,
386
+ "loss": 0.6694,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.34370972151700974,
391
+ "grad_norm": 2.4227328300476074,
392
+ "learning_rate": 1.526634621864395e-05,
393
+ "loss": 0.6773,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.34995898918095536,
398
+ "grad_norm": 2.368255615234375,
399
+ "learning_rate": 1.5093201623287631e-05,
400
+ "loss": 0.7048,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.356208256844901,
405
+ "grad_norm": 1.9544981718063354,
406
+ "learning_rate": 1.4917970172562122e-05,
407
+ "loss": 0.686,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.3624575245088466,
412
+ "grad_norm": 2.019627809524536,
413
+ "learning_rate": 1.4740723664664483e-05,
414
+ "loss": 0.6911,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.36870679217279223,
419
+ "grad_norm": 1.8915493488311768,
420
+ "learning_rate": 1.4561534723428205e-05,
421
+ "loss": 0.6828,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.3749560598367379,
426
+ "grad_norm": 2.211825370788574,
427
+ "learning_rate": 1.4380476768566825e-05,
428
+ "loss": 0.6636,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.38120532750068353,
433
+ "grad_norm": 1.9755256175994873,
434
+ "learning_rate": 1.4197623985591373e-05,
435
+ "loss": 0.6902,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.38745459516462916,
440
+ "grad_norm": 1.9239295721054077,
441
+ "learning_rate": 1.4013051295414108e-05,
442
+ "loss": 0.6795,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.3937038628285748,
447
+ "grad_norm": 2.1901464462280273,
448
+ "learning_rate": 1.3826834323650899e-05,
449
+ "loss": 0.7005,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.3999531304925204,
454
+ "grad_norm": 1.9579427242279053,
455
+ "learning_rate": 1.3639049369634878e-05,
456
+ "loss": 0.6789,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.406202398156466,
461
+ "grad_norm": 1.819069266319275,
462
+ "learning_rate": 1.344977337515404e-05,
463
+ "loss": 0.6808,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.41245166582041165,
468
+ "grad_norm": 2.11354923248291,
469
+ "learning_rate": 1.3259083892925633e-05,
470
+ "loss": 0.6798,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.41870093348435733,
475
+ "grad_norm": 2.0537407398223877,
476
+ "learning_rate": 1.3067059054820184e-05,
477
+ "loss": 0.6587,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.42495020114830295,
482
+ "grad_norm": 2.4250621795654297,
483
+ "learning_rate": 1.2873777539848284e-05,
484
+ "loss": 0.6699,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.4311994688122486,
489
+ "grad_norm": 2.0022125244140625,
490
+ "learning_rate": 1.2679318541923131e-05,
491
+ "loss": 0.6644,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.4374487364761942,
496
+ "grad_norm": 1.9328835010528564,
497
+ "learning_rate": 1.248376173741215e-05,
498
+ "loss": 0.68,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.4436980041401398,
503
+ "grad_norm": 2.0376391410827637,
504
+ "learning_rate": 1.2287187252490914e-05,
505
+ "loss": 0.684,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.44994727180408545,
510
+ "grad_norm": 1.9673105478286743,
511
+ "learning_rate": 1.2089675630312755e-05,
512
+ "loss": 0.6515,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.45619653946803107,
517
+ "grad_norm": 1.7611652612686157,
518
+ "learning_rate": 1.1891307798007536e-05,
519
+ "loss": 0.6609,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.4624458071319767,
524
+ "grad_norm": 1.9665021896362305,
525
+ "learning_rate": 1.1692165033523117e-05,
526
+ "loss": 0.6801,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.4686950747959224,
531
+ "grad_norm": 2.349421977996826,
532
+ "learning_rate": 1.1492328932323022e-05,
533
+ "loss": 0.6831,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.474944342459868,
538
+ "grad_norm": 2.5945515632629395,
539
+ "learning_rate": 1.1291881373954066e-05,
540
+ "loss": 0.6725,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.4811936101238136,
545
+ "grad_norm": 1.7327567338943481,
546
+ "learning_rate": 1.109090448849755e-05,
547
+ "loss": 0.6394,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.48744287778775924,
552
+ "grad_norm": 1.980264663696289,
553
+ "learning_rate": 1.088948062291783e-05,
554
+ "loss": 0.6682,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.49369214545170487,
559
+ "grad_norm": 2.313495635986328,
560
+ "learning_rate": 1.0687692307321984e-05,
561
+ "loss": 0.6353,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.4999414131156505,
566
+ "grad_norm": 2.176020860671997,
567
+ "learning_rate": 1.0485622221144485e-05,
568
+ "loss": 0.6433,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.5061906807795962,
573
+ "grad_norm": 2.5199544429779053,
574
+ "learning_rate": 1.0283353159270644e-05,
575
+ "loss": 0.6719,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.5124399484435418,
580
+ "grad_norm": 2.6333529949188232,
581
+ "learning_rate": 1.0080967998112787e-05,
582
+ "loss": 0.6576,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.5186892161074874,
587
+ "grad_norm": 2.367847204208374,
588
+ "learning_rate": 9.878549661653013e-06,
589
+ "loss": 0.6547,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.524938483771433,
594
+ "grad_norm": 1.736178994178772,
595
+ "learning_rate": 9.676181087466444e-06,
596
+ "loss": 0.6361,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.5311877514353787,
601
+ "grad_norm": 1.8639039993286133,
602
+ "learning_rate": 9.473945192738933e-06,
603
+ "loss": 0.6497,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.5374370190993243,
608
+ "grad_norm": 1.7635918855667114,
609
+ "learning_rate": 9.27192484029312e-06,
610
+ "loss": 0.6654,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.5436862867632699,
615
+ "grad_norm": 2.0125083923339844,
616
+ "learning_rate": 9.070202804636745e-06,
617
+ "loss": 0.6397,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.5499355544272155,
622
+ "grad_norm": 2.078883171081543,
623
+ "learning_rate": 8.868861738047158e-06,
624
+ "loss": 0.6603,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.5561848220911612,
629
+ "grad_norm": 1.781632423400879,
630
+ "learning_rate": 8.667984136705927e-06,
631
+ "loss": 0.6556,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.5624340897551068,
636
+ "grad_norm": 2.0591318607330322,
637
+ "learning_rate": 8.46765230689737e-06,
638
+ "loss": 0.6258,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.5686833574190524,
643
+ "grad_norm": 1.6111246347427368,
644
+ "learning_rate": 8.267948331284923e-06,
645
+ "loss": 0.6472,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.5749326250829981,
650
+ "grad_norm": 2.417381763458252,
651
+ "learning_rate": 8.068954035279121e-06,
652
+ "loss": 0.6226,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.5811818927469438,
657
+ "grad_norm": 2.185147762298584,
658
+ "learning_rate": 7.870750953510983e-06,
659
+ "loss": 0.617,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.5874311604108894,
664
+ "grad_norm": 2.3496596813201904,
665
+ "learning_rate": 7.673420296424541e-06,
666
+ "loss": 0.633,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.593680428074835,
671
+ "grad_norm": 2.4552910327911377,
672
+ "learning_rate": 7.4770429170022e-06,
673
+ "loss": 0.6312,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.5999296957387806,
678
+ "grad_norm": 2.7454309463500977,
679
+ "learning_rate": 7.2816992776365714e-06,
680
+ "loss": 0.6252,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.6061789634027263,
685
+ "grad_norm": 2.967708110809326,
686
+ "learning_rate": 7.08746941716232e-06,
687
+ "loss": 0.634,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.6124282310666719,
692
+ "grad_norm": 2.755345582962036,
693
+ "learning_rate": 6.894432918061579e-06,
694
+ "loss": 0.6216,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.6186774987306175,
699
+ "grad_norm": 1.987317681312561,
700
+ "learning_rate": 6.702668873856339e-06,
701
+ "loss": 0.643,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.6249267663945631,
706
+ "grad_norm": 2.4610655307769775,
707
+ "learning_rate": 6.5122558567011775e-06,
708
+ "loss": 0.6409,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.6311760340585088,
713
+ "grad_norm": 1.9931960105895996,
714
+ "learning_rate": 6.323271885189636e-06,
715
+ "loss": 0.6418,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.6374253017224544,
720
+ "grad_norm": 3.0215256214141846,
721
+ "learning_rate": 6.135794392387353e-06,
722
+ "loss": 0.635,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.6436745693864,
727
+ "grad_norm": 1.752156376838684,
728
+ "learning_rate": 5.949900194105167e-06,
729
+ "loss": 0.6326,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.6499238370503456,
734
+ "grad_norm": 1.8890056610107422,
735
+ "learning_rate": 5.765665457425102e-06,
736
+ "loss": 0.6338,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.6561731047142912,
741
+ "grad_norm": 2.2345621585845947,
742
+ "learning_rate": 5.5831656694921465e-06,
743
+ "loss": 0.6262,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.662422372378237,
748
+ "grad_norm": 1.983519196510315,
749
+ "learning_rate": 5.40247560658467e-06,
750
+ "loss": 0.6421,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.6686716400421826,
755
+ "grad_norm": 2.091252326965332,
756
+ "learning_rate": 5.223669303476041e-06,
757
+ "loss": 0.6166,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.6749209077061282,
762
+ "grad_norm": 1.9888851642608643,
763
+ "learning_rate": 5.046820023100129e-06,
764
+ "loss": 0.6033,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.6811701753700738,
769
+ "grad_norm": 3.788809061050415,
770
+ "learning_rate": 4.872000226533001e-06,
771
+ "loss": 0.6292,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.6874194430340195,
776
+ "grad_norm": 2.0238468647003174,
777
+ "learning_rate": 4.699281543303222e-06,
778
+ "loss": 0.6238,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.6936687106979651,
783
+ "grad_norm": 1.7076054811477661,
784
+ "learning_rate": 4.528734742042803e-06,
785
+ "loss": 0.609,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.6999179783619107,
790
+ "grad_norm": 2.1124353408813477,
791
+ "learning_rate": 4.360429701490935e-06,
792
+ "loss": 0.6116,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.7061672460258563,
797
+ "grad_norm": 1.8266746997833252,
798
+ "learning_rate": 4.194435381862343e-06,
799
+ "loss": 0.6217,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.712416513689802,
804
+ "grad_norm": 1.7669917345046997,
805
+ "learning_rate": 4.03081979659195e-06,
806
+ "loss": 0.6247,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.7186657813537476,
811
+ "grad_norm": 2.847994565963745,
812
+ "learning_rate": 3.869649984467504e-06,
813
+ "loss": 0.6092,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.7249150490176932,
818
+ "grad_norm": 5.524293899536133,
819
+ "learning_rate": 3.7109919821615546e-06,
820
+ "loss": 0.6063,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.7311643166816388,
825
+ "grad_norm": 2.3931970596313477,
826
+ "learning_rate": 3.5549107971739905e-06,
827
+ "loss": 0.6154,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.7374135843455845,
832
+ "grad_norm": 1.9852912425994873,
833
+ "learning_rate": 3.4014703811963024e-06,
834
+ "loss": 0.6119,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.7436628520095301,
839
+ "grad_norm": 1.8052198886871338,
840
+ "learning_rate": 3.2507336039084315e-06,
841
+ "loss": 0.6043,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.7499121196734758,
846
+ "grad_norm": 1.8438955545425415,
847
+ "learning_rate": 3.1027622272189572e-06,
848
+ "loss": 0.6308,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.7561613873374214,
853
+ "grad_norm": 2.11885929107666,
854
+ "learning_rate": 2.9576168799591663e-06,
855
+ "loss": 0.5984,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.7624106550013671,
860
+ "grad_norm": 2.6443002223968506,
861
+ "learning_rate": 2.8153570330413925e-06,
862
+ "loss": 0.6139,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.7686599226653127,
867
+ "grad_norm": 2.413456678390503,
868
+ "learning_rate": 2.6760409750917925e-06,
869
+ "loss": 0.5974,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.7749091903292583,
874
+ "grad_norm": 2.166473627090454,
875
+ "learning_rate": 2.5397257885675396e-06,
876
+ "loss": 0.6034,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.7811584579932039,
881
+ "grad_norm": 1.9241559505462646,
882
+ "learning_rate": 2.406467326368237e-06,
883
+ "loss": 0.6026,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.7874077256571496,
888
+ "grad_norm": 2.043766736984253,
889
+ "learning_rate": 2.2763201889510987e-06,
890
+ "loss": 0.6216,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.7936569933210952,
895
+ "grad_norm": 1.6110656261444092,
896
+ "learning_rate": 2.149337701959325e-06,
897
+ "loss": 0.6198,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.7999062609850408,
902
+ "grad_norm": 1.7661818265914917,
903
+ "learning_rate": 2.025571894372794e-06,
904
+ "loss": 0.5838,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.8061555286489864,
909
+ "grad_norm": 1.8362523317337036,
910
+ "learning_rate": 1.9050734771900414e-06,
911
+ "loss": 0.5999,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.812404796312932,
916
+ "grad_norm": 1.9224945306777954,
917
+ "learning_rate": 1.7878918226502816e-06,
918
+ "loss": 0.5956,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.8186540639768777,
923
+ "grad_norm": 2.024622678756714,
924
+ "learning_rate": 1.6740749440039262e-06,
925
+ "loss": 0.6083,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.8249033316408233,
930
+ "grad_norm": 2.0744571685791016,
931
+ "learning_rate": 1.5636694758399563e-06,
932
+ "loss": 0.5917,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.8311525993047689,
937
+ "grad_norm": 2.3073995113372803,
938
+ "learning_rate": 1.4567206549781699e-06,
939
+ "loss": 0.5929,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.8374018669687147,
944
+ "grad_norm": 1.8136156797409058,
945
+ "learning_rate": 1.3532723019341376e-06,
946
+ "loss": 0.5936,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.8436511346326603,
951
+ "grad_norm": 1.8207391500473022,
952
+ "learning_rate": 1.2533668029644751e-06,
953
+ "loss": 0.5933,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.8499004022966059,
958
+ "grad_norm": 2.001443386077881,
959
+ "learning_rate": 1.1570450926997657e-06,
960
+ "loss": 0.5891,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.8561496699605515,
965
+ "grad_norm": 1.8668729066848755,
966
+ "learning_rate": 1.064346637372271e-06,
967
+ "loss": 0.5799,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.8623989376244972,
972
+ "grad_norm": 2.3950822353363037,
973
+ "learning_rate": 9.753094186453028e-07,
974
+ "loss": 0.5994,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.8686482052884428,
979
+ "grad_norm": 1.9551249742507935,
980
+ "learning_rate": 8.89969918050847e-07,
981
+ "loss": 0.6119,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.8748974729523884,
986
+ "grad_norm": 1.774511456489563,
987
+ "learning_rate": 8.083631020418792e-07,
988
+ "loss": 0.5958,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.881146740616334,
993
+ "grad_norm": 1.6152182817459106,
994
+ "learning_rate": 7.305224076654127e-07,
995
+ "loss": 0.6025,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.8873960082802796,
1000
+ "grad_norm": 3.579341173171997,
1001
+ "learning_rate": 6.564797288622371e-07,
1002
+ "loss": 0.5985,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.8936452759442253,
1007
+ "grad_norm": 1.9974656105041504,
1008
+ "learning_rate": 5.86265403398899e-07,
1009
+ "loss": 0.5992,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.8998945436081709,
1014
+ "grad_norm": 1.8749598264694214,
1015
+ "learning_rate": 5.199082004372958e-07,
1016
+ "loss": 0.5714,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.9061438112721165,
1021
+ "grad_norm": 2.20654296875,
1022
+ "learning_rate": 4.5743530874699293e-07,
1023
+ "loss": 0.5967,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.9123930789360621,
1028
+ "grad_norm": 1.7783575057983398,
1029
+ "learning_rate": 3.988723255650728e-07,
1030
+ "loss": 0.5883,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.9186423466000078,
1035
+ "grad_norm": 1.8559459447860718,
1036
+ "learning_rate": 3.442432461080858e-07,
1037
+ "loss": 0.6041,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.9248916142639534,
1042
+ "grad_norm": 1.6267383098602295,
1043
+ "learning_rate": 2.935704537404083e-07,
1044
+ "loss": 0.6076,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.9311408819278991,
1049
+ "grad_norm": 1.5899640321731567,
1050
+ "learning_rate": 2.468747108030289e-07,
1051
+ "loss": 0.593,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.9373901495918447,
1056
+ "grad_norm": 1.630462884902954,
1057
+ "learning_rate": 2.0417515010652032e-07,
1058
+ "loss": 0.5928,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.9436394172557904,
1063
+ "grad_norm": 1.6635667085647583,
1064
+ "learning_rate": 1.6548926709168634e-07,
1065
+ "loss": 0.6025,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.949888684919736,
1070
+ "grad_norm": 1.7267752885818481,
1071
+ "learning_rate": 1.30832912661093e-07,
1072
+ "loss": 0.5937,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.9561379525836816,
1077
+ "grad_norm": 1.8789523839950562,
1078
+ "learning_rate": 1.0022028668442374e-07,
1079
+ "loss": 0.5874,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.9623872202476272,
1084
+ "grad_norm": 1.6144094467163086,
1085
+ "learning_rate": 7.366393218031564e-08,
1086
+ "loss": 0.6099,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.9686364879115729,
1091
+ "grad_norm": 1.5856353044509888,
1092
+ "learning_rate": 5.1174730177064866e-08,
1093
+ "loss": 0.5902,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.9748857555755185,
1098
+ "grad_norm": 1.5565356016159058,
1099
+ "learning_rate": 3.2761895254306285e-08,
1100
+ "loss": 0.5852,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.9811350232394641,
1105
+ "grad_norm": 1.7339156866073608,
1106
+ "learning_rate": 1.8432971767488038e-08,
1107
+ "loss": 0.5962,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.9873842909034097,
1112
+ "grad_norm": 1.5991542339324951,
1113
+ "learning_rate": 8.193830756699773e-09,
1114
+ "loss": 0.6002,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.9936335585673554,
1119
+ "grad_norm": 1.7472448348999023,
1120
+ "learning_rate": 2.0486675411102165e-09,
1121
+ "loss": 0.5943,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.999882826231301,
1126
+ "grad_norm": 1.9169718027114868,
1127
+ "learning_rate": 0.0,
1128
+ "loss": 0.5911,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.999882826231301,
1133
+ "step": 1600,
1134
+ "total_flos": 1.7902479199415828e+19,
1135
+ "train_loss": 0.6576289132237434,
1136
+ "train_runtime": 37752.4225,
1137
+ "train_samples_per_second": 2.713,
1138
+ "train_steps_per_second": 0.042
1139
+ }
1140
+ ],
1141
+ "logging_steps": 10,
1142
+ "max_steps": 1600,
1143
+ "num_input_tokens_seen": 0,
1144
+ "num_train_epochs": 1,
1145
+ "save_steps": 256,
1146
+ "stateful_callbacks": {
1147
+ "TrainerControl": {
1148
+ "args": {
1149
+ "should_epoch_stop": false,
1150
+ "should_evaluate": false,
1151
+ "should_log": false,
1152
+ "should_save": true,
1153
+ "should_training_stop": true
1154
+ },
1155
+ "attributes": {}
1156
+ }
1157
+ },
1158
+ "total_flos": 1.7902479199415828e+19,
1159
+ "train_batch_size": 1,
1160
+ "trial_name": null,
1161
+ "trial_params": null
1162
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db132c23ed25a4d38913d642e9191ae87bca53f2574a459187c6eda4b58f5e8c
3
+ size 6648
training_loss.png ADDED