vall-e / config.yaml
ecker
So far so good
f0fb314
raw
history blame
1.98 kB
dataset:
training: [
]
validation: [
]
noise: [
]
speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
use_hdf5: True
hdf5_flag: r
validate: True
workers: 4
cache: True
phones_range: [4, 512]
duration_range: [1.0, 24.0]
random_utterance: 1.0
max_prompts: 3
prompt_duration: 3.0
sample_type: speaker
tasks_list: ["tts"] # ["tts", "ns", "sr", "tse", "cse", "nse", "tts"]
models:
_max_levels: 8
_models:
- name: "ar"
size: "full"
resp_levels: 1
prom_levels: 2
tasks: 8
arch_type: "retnet"
- name: "nar"
size: "full"
resp_levels: 3
prom_levels: 4
tasks: 8
arch_type: "retnet"
hyperparameters:
batch_size: 32
gradient_accumulation_steps: 4
gradient_clipping: 100
optimizer: AdamW
learning_rate: 1.0e-6
scheduler_type: ""
#scheduler_type: OneCycle
#scheduler_params:
# cycle_first_step_size: 10_000
# cycle_first_stair_count: 10_000
# cycle_second_step_size: 15_000
# cycle_second_stair_count: 15_000
# decay_step_size: 5_000
# cycle_min_lr: 2.5e-4 # 1.0e-5
# cycle_max_lr: 2.5e-4 # 1.0e-4
# decay_lr_rate: 0.0
# cycle_min_mom: 0.90
# cycle_max_mom: 0.99
# decay_mom_rate: 0.0
evaluation:
batch_size: 64
frequency: 500
size: 64
steps: 300
ar_temperature: 0.95
nar_temperature: 0.25
trainer:
iterations: 1_000_000
save_tag: step
save_on_oom: True
save_on_quit: True
save_frequency: 25
keep_last_checkpoints: 2
aggressive_optimizations: False
load_state_dict: True
strict_loading: False
#load_tag: "9500"
#load_states: False
#restart_step_count: True
gc_mode: None # "global_step"
weight_dtype: bfloat16
backend: deepspeed
deepspeed:
zero_optimization_level: 2
use_compression_training: True
inference:
use_vocos: True
normalize: False
weight_dtype: float32
bitsandbytes:
enabled: False
injects: True
linear: True
embedding: True