vall-e / config.yaml
ecker's picture
Upload 5 files
a4005ad
raw
history blame
1.73 kB
dataset:
training: [
]
validation: [
]
noise: [
]
speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
use_hdf5: True
use_metadata: True
hdf5_flag: r
validate: True
workers: 4
cache: True
phones_range: [4, 256]
duration_range: [1.0, 16.0]
random_utterance: 1.0
max_prompts: 3
prompt_duration: 3.0
sample_type: speaker
tasks_list: ["tts"] # , "ns", "sr", "tse", "cse", "nse", "tts"]
models:
_prom_levels: 4
_max_levels: 8
_models:
- name: "ar"
size: "full"
resp_levels: 1
prom_levels: 2
tasks: 8
arch_type: "retnet"
training: True
- name: "nar"
size: "full"
resp_levels: 3
prom_levels: 4
tasks: 8
arch_type: "retnet"
training: True
hyperparameters:
batch_size: 8
gradient_accumulation_steps: 1
gradient_clipping: 100
optimizer: AdamW
learning_rate: 1.0e-5
scheduler_type: ""
evaluation:
batch_size: 16
frequency: 500
size: 16
steps: 300
ar_temperature: 0.95
nar_temperature: 0.25
load_disabled_engines: True
trainer:
iterations: 1_000_000
save_tag: step
save_on_oom: True
save_on_quit: True
save_frequency: 500
export_on_save: True
keep_last_checkpoints: 4
aggressive_optimizations: False
load_disabled_engines: False
load_state_dict: True
gc_mode: None # "global_step"
weight_dtype: float32
amp: False
backend: local
deepspeed:
zero_optimization_level: 0
use_compression_training: True
inference:
weight_dtype: float32
amp: False
use_vocos: True
normalize: False
recurrent_chunk_size: 0
recurrent_forward: False
bitsandbytes:
enabled: False
injects: True
linear: True
embedding: True
device: cpu