ecemisildar
commited on
Commit
·
d818670
1
Parent(s):
ae1a1d4
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1197.97 +/- 173.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0162239236dcab64277c483fa2685a77493f2bb4da8e257f8406e4e11bd444d
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f26b5af6ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26b5af6f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26b5afa040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26b5afa0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f26b5afa160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f26b5afa1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26b5afa280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26b5afa310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f26b5afa3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26b5afa430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26b5afa4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26b5afa550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f26b5af7ec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678985053265454404,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK6lbj9YKYG+rsDgPjEecLys+ty/UqJewFxikD+8OZg/RHSDP/cpRD7q14Y/5sNsPsb91D/b+pK/P/qXv/+pbj8JhMm/s8m3PEcp9L9Q/Ai/HFxiv0xViz4b7hK/aoAIwEmFBT9Ii0DArnUFP7/VmL/VdoU/TEGVvoeD0z4h45E/Je4gvyWMlL74rMw+o8hIv4STkz8RJL09MRrcP78ZTz3Lc229cNk9v5xbI758cL2+lZyMvnBGVb/MoZ8+gavrPqwQLL8XfFM+6MA5v8J84TxJhQU/NS+qPq51BT+/1Zi/P1fXvh2DkD4Dnyw/pUgkv5DzIMAHJu2/qqAKPTY7Fb5PbCi+Xp2lv4veMb54ve6/u6P9v4WFjL9hCIc+Imwnvjitt787vUS/1nYGPzBAa79EHyO+LYCSvY23AL+VWrA/SYUFPzUvqj6udQU/v9WYv01AxD6otja/ch0cPaq1iTzdTyk9jeIHvykR3Dycy3+/GocvP6C+u7+2tDI/uCFbv2StAT/2c9i5SI5DP1d+XT9k85e/StGGPSw2ZD94+9g8pYvPPixtRD3Ex7o/ul6fPkmFBT81L6o+rnUFP7dmVj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABgcys2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASG+UvAAAAAAkNdq/AAAAAB9KBz4AAAAAig7bPwAAAAAjBTS8AAAAACm44j8AAAAAw8kXPQAAAABtluK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqvAdNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCh14j0AAAAAKJzqvwAAAABDi4g9AAAAAJj03j8AAAAAi6usvQAAAAAqXvc/AAAAABRfDb4AAAAAfMP5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRAJ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICAJu89AAAAAEWx7L8AAAAAoR4SvgAAAAAyHuQ/AAAAAAnmnD0AAAAAJgLgPwAAAAC4vIu9AAAAAIH5978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Py01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHnDGOwAAAADP2vC/AAAAAAOO5b0AAAAAJ9HzPwAAAACkc4w8AAAAAEpK5T8AAAAAZEAHvgAAAAABMt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJDYgkPczqOMAWyUTegDjAF0lEdAq2KF0Rvm5nV9lChoBkdAhuKhS1mapmgHTegDaAhHQKtjJ/3Fkx11fZQoaAZHQIh4yOtGNJhoB03oA2gIR0CrazocaOxTdX2UKGgGR0CHSPluFYdRaAdN6ANoCEdAq2yEi2UjcHV9lChoBkdAkKtL92ovSWgHTegDaAhHQKtyAhr30wt1fZQoaAZHQJCs4Qsf7rNoB03oA2gIR0CrcmVVo6CEdX2UKGgGR0CTQh82rGR3aAdN6ANoCEdAq3fs3VCoj3V9lChoBkdAkJ2ntShrWWgHTegDaAhHQKt5RywwCbN1fZQoaAZHQJLgKM72crloB03oA2gIR0Crfuk+5e7ddX2UKGgGR0CR4B4lyBClaAdN6ANoCEdAq3+PReC04XV9lChoBkdAkMJb+tKZlWgHTegDaAhHQKuHVkd3jdZ1fZQoaAZHQJF+tp7CzkZoB03oA2gIR0CriZH1WbPQdX2UKGgGR0CN/9nzQNTcaAdN6ANoCEdAq48RKL8763V9lChoBkdAjHs0MXrMT2gHTegDaAhHQKuPeleF+NN1fZQoaAZHQJIbf5Jsfq5oB03oA2gIR0CrlFovBacJdX2UKGgGR0CRhJtZV4oraAdN6ANoCEdAq5WoI0IkaHV9lChoBkdAkPLb4WUKRmgHTegDaAhHQKubf+ERJ3B1fZQoaAZHQJBICT4cm0FoB03oA2gIR0Crm+FRP421dX2UKGgGR0CP5OrI5o4/aAdN6ANoCEdAq6Kc3l0YCXV9lChoBkdAkOGPgWJrL2gHTegDaAhHQKuk0++M6zV1fZQoaAZHQJH+PpC8e0ZoB03oA2gIR0Crq9nfuTibdX2UKGgGR0COY2QlKK51aAdN6ANoCEdAq6w6J0nw5XV9lChoBkdAkGYJ6MR6GGgHTegDaAhHQKuxVYYBNmF1fZQoaAZHQJHg9lOGj9JoB03oA2gIR0CrsrbCaZx8dX2UKGgGR0CT2auHerMlaAdN6ANoCEdAq7hBkZrHl3V9lChoBkdAkOnUtyxRmGgHTegDaAhHQKu4q9+w1SB1fZQoaAZHQJI+jmzSkTJoB03oA2gIR0CrvmHhjvuxdX2UKGgGR0CTIvMSK3uvaAdN6ANoCEdAq8By0WuX/3V9lChoBkdAkkz1jqfOEGgHTegDaAhHQKvJBaSs8xN1fZQoaAZHQJRiaKk2xY9oB03oA2gIR0CryW4zrNW3dX2UKGgGR0CTMOeD3/PxaAdN6ANoCEdAq85kWVNYbXV9lChoBkdAlIn5jDsMRmgHTegDaAhHQKvPvZA6dUd1fZQoaAZHQJI+pagVXV9oB03oA2gIR0Cr1a8cdYGMdX2UKGgGR0CSPMFiKBNFaAdN6ANoCEdAq9YYL5RCQnV9lChoBkdAlcSmfwqiGmgHTegDaAhHQKvbPC66J691fZQoaAZHQJS2tnyup0hoB03oA2gIR0Cr3SHUtqYadX2UKGgGR0CUBLgPVd5ZaAdN6ANoCEdAq+aa//NqxnV9lChoBkdAkkIMqjJuEWgHTegDaAhHQKvnIZ/CqId1fZQoaAZHQJF2ULiMo+hoB03oA2gIR0Cr7D+pGWledX2UKGgGR0CRN3LNfPX1aAdN6ANoCEdAq+2vAAQxvnV9lChoBkdAhAs/dAPd22gHTegDaAhHQKvzgGyHEdh1fZQoaAZHQJKxg0VJtixoB03oA2gIR0Cr8+eMqBmPdX2UKGgGR0CNTrfWtlqbaAdN6ANoCEdAq/j9mUW2w3V9lChoBkdAk9dO32EkB2gHTegDaAhHQKv6TbSJCSl1fZQoaAZHQJA/SJLuhK1oB03oA2gIR0CsAvnv+fh/dX2UKGgGR0CUo96Hj6vaaAdN6ANoCEdArAOoUzsQd3V9lChoBkdAlFYSz1K5CmgHTegDaAhHQKwJdRVp9JB1fZQoaAZHQJPoGiWVu79oB03oA2gIR0CsCseCTUy6dX2UKGgGR0CO2dnzxwyZaAdN6ANoCEdArBBT70nPV3V9lChoBkdAkzWeaOPvKGgHTegDaAhHQKwQtjin5zp1fZQoaAZHQI8fQTfzjFRoB03oA2gIR0CsFi3iJfpmdX2UKGgGR0COWn5s0pEyaAdN6ANoCEdArBd/yy2QXHV9lChoBkdAj6t0TlDF62gHTegDaAhHQKwey3o9s8B1fZQoaAZHQIkvI5zYEntoB03oA2gIR0CsH3cDB/I9dX2UKGgGR0CL5Py4FzMiaAdN6ANoCEdArCaPjsD4g3V9lChoBkdAjibUMG5c1WgHTegDaAhHQKwn7tBv73x1fZQoaAZHQJLt9E2HclBoB03oA2gIR0CsLW2eQMhHdX2UKGgGR0CTFhHn2ZiNaAdN6ANoCEdArC3TzoUzsXV9lChoBkdAlEChDb8FZGgHTegDaAhHQKwyxpxFRYR1fZQoaAZHQJWKbi++M61oB03oA2gIR0CsNBVcdHUddX2UKGgGR0CVZm/8EV32aAdN6ANoCEdArDn4YNy5qnV9lChoBkdAks0hHbypaWgHTegDaAhHQKw6l2ki2Ul1fZQoaAZHQJK3IxYaHbhoB03oA2gIR0CsQqYqG1x9dX2UKGgGR0CVjY+cH4XXaAdN6ANoCEdArER3FirksHV9lChoBkdAlKpZElVtGmgHTegDaAhHQKxJ75D7ZWd1fZQoaAZHQJYNEOy3TeBoB03oA2gIR0CsSlQ9q1w6dX2UKGgGR0CU9GV/+bVjaAdN6ANoCEdArE9ie05U+HV9lChoBkdAk/ziKrJbMWgHTegDaAhHQKxQrtiQT251fZQoaAZHQJSU5FVktmNoB03oA2gIR0CsVlXbEgnudX2UKGgGR0CUOtwco6S1aAdN6ANoCEdArFa5VENOM3V9lChoBkdAkrHFTisGPmgHTegDaAhHQKxdsZa3Zwp1fZQoaAZHQJFkhGtp22ZoB03oA2gIR0CsX+aJZW7wdX2UKGgGR0CTjQZDiOvMaAdN6ANoCEdArGa5LdvbXnV9lChoBkdAiVbBtDUmUmgHTegDaAhHQKxnJDmbLEF1fZQoaAZHQIXyBKDkELZoB03oA2gIR0CsbBkm6XjVdX2UKGgGR0B93SRs/IKdaAdN6ANoCEdArG1laKUFCHV9lChoBkdAlAw6nzg/DGgHTegDaAhHQKxy6BLf1pV1fZQoaAZHQJTB3DEWIoFoB03oA2gIR0Csc1GrKeTWdX2UKGgGR0CUMrqoIfKZaAdN6ANoCEdArHjYXfqHGnV9lChoBkdAkT1nb/Ot4mgHTegDaAhHQKx66fg75mB1fZQoaAZHQIrYGkep4r1oB03oA2gIR0Csg1Pw/gR9dX2UKGgGR0CB9w7e2uxKaAdN6ANoCEdArIO6uW8h93V9lChoBkdAkgLD/Q0GeWgHTegDaAhHQKyIkh9LHuJ1fZQoaAZHQH/t5h8YyftoB03oA2gIR0Csieq6e5FxdX2UKGgGR0CBmUZbY9PlaAdN6ANoCEdArI/5DLKV6nV9lChoBkdAgJgW2gFotmgHTegDaAhHQKyQY3w1BMV1fZQoaAZHQHq9cvduYQdoB03oA2gIR0CslWW69TP0dX2UKGgGR0CFyEt7rs0IaAdN6ANoCEdArJc3epGWlnV9lChoBkdAkVWlafSQYGgHTegDaAhHQKygXxkNF0B1fZQoaAZHQIL7MCzTnaFoB03oA2gIR0CsoQkPDpC8dX2UKGgGR0COsHapxWDIaAdN6ANoCEdArKYJ7JGOMnV9lChoBkdAkLbsTN+so2gHTegDaAhHQKynV6uW8h91fZQoaAZHQIgJ1FjNILBoB03oA2gIR0CsrQVeKKpDdX2UKGgGR0CKRIOaOPvKaAdN6ANoCEdArK1uA/cFhXV9lChoBkdAkMNJMYdhiWgHTegDaAhHQKyyfOO801t1fZQoaAZHQI/m/xx1gYxoB03oA2gIR0Css88jAzpHdX2UKGgGR0CUs8CJXQt0aAdN6ANoCEdArLvpkmQbM3V9lChoBkdAk0ixN7BwdmgHTegDaAhHQKy8nsu3+dd1fZQoaAZHQJQFcKu0TlFoB03oA2gIR0CswuoNEw36dX2UKGgGR0CUIOFPBSDRaAdN6ANoCEdArMQ9yaNMoXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5d29c11c1b682dd315bef9f8afffbf17bf59c2a1488c5dfb32ad164e4729357
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8c5d4d531ee03fc242168fecb29ea6b40b0adb4ca001c5412c8c92949825647
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26b5af6ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26b5af6f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26b5afa040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26b5afa0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f26b5afa160>", "forward": "<function ActorCriticPolicy.forward at 0x7f26b5afa1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26b5afa280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26b5afa310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26b5afa3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26b5afa430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26b5afa4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26b5afa550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26b5af7ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678985053265454404, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK6lbj9YKYG+rsDgPjEecLys+ty/UqJewFxikD+8OZg/RHSDP/cpRD7q14Y/5sNsPsb91D/b+pK/P/qXv/+pbj8JhMm/s8m3PEcp9L9Q/Ai/HFxiv0xViz4b7hK/aoAIwEmFBT9Ii0DArnUFP7/VmL/VdoU/TEGVvoeD0z4h45E/Je4gvyWMlL74rMw+o8hIv4STkz8RJL09MRrcP78ZTz3Lc229cNk9v5xbI758cL2+lZyMvnBGVb/MoZ8+gavrPqwQLL8XfFM+6MA5v8J84TxJhQU/NS+qPq51BT+/1Zi/P1fXvh2DkD4Dnyw/pUgkv5DzIMAHJu2/qqAKPTY7Fb5PbCi+Xp2lv4veMb54ve6/u6P9v4WFjL9hCIc+Imwnvjitt787vUS/1nYGPzBAa79EHyO+LYCSvY23AL+VWrA/SYUFPzUvqj6udQU/v9WYv01AxD6otja/ch0cPaq1iTzdTyk9jeIHvykR3Dycy3+/GocvP6C+u7+2tDI/uCFbv2StAT/2c9i5SI5DP1d+XT9k85e/StGGPSw2ZD94+9g8pYvPPixtRD3Ex7o/ul6fPkmFBT81L6o+rnUFP7dmVj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABgcys2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASG+UvAAAAAAkNdq/AAAAAB9KBz4AAAAAig7bPwAAAAAjBTS8AAAAACm44j8AAAAAw8kXPQAAAABtluK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqvAdNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCh14j0AAAAAKJzqvwAAAABDi4g9AAAAAJj03j8AAAAAi6usvQAAAAAqXvc/AAAAABRfDb4AAAAAfMP5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRAJ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICAJu89AAAAAEWx7L8AAAAAoR4SvgAAAAAyHuQ/AAAAAAnmnD0AAAAAJgLgPwAAAAC4vIu9AAAAAIH5978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Py01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHnDGOwAAAADP2vC/AAAAAAOO5b0AAAAAJ9HzPwAAAACkc4w8AAAAAEpK5T8AAAAAZEAHvgAAAAABMt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJDYgkPczqOMAWyUTegDjAF0lEdAq2KF0Rvm5nV9lChoBkdAhuKhS1mapmgHTegDaAhHQKtjJ/3Fkx11fZQoaAZHQIh4yOtGNJhoB03oA2gIR0CrazocaOxTdX2UKGgGR0CHSPluFYdRaAdN6ANoCEdAq2yEi2UjcHV9lChoBkdAkKtL92ovSWgHTegDaAhHQKtyAhr30wt1fZQoaAZHQJCs4Qsf7rNoB03oA2gIR0CrcmVVo6CEdX2UKGgGR0CTQh82rGR3aAdN6ANoCEdAq3fs3VCoj3V9lChoBkdAkJ2ntShrWWgHTegDaAhHQKt5RywwCbN1fZQoaAZHQJLgKM72crloB03oA2gIR0Crfuk+5e7ddX2UKGgGR0CR4B4lyBClaAdN6ANoCEdAq3+PReC04XV9lChoBkdAkMJb+tKZlWgHTegDaAhHQKuHVkd3jdZ1fZQoaAZHQJF+tp7CzkZoB03oA2gIR0CriZH1WbPQdX2UKGgGR0CN/9nzQNTcaAdN6ANoCEdAq48RKL8763V9lChoBkdAjHs0MXrMT2gHTegDaAhHQKuPeleF+NN1fZQoaAZHQJIbf5Jsfq5oB03oA2gIR0CrlFovBacJdX2UKGgGR0CRhJtZV4oraAdN6ANoCEdAq5WoI0IkaHV9lChoBkdAkPLb4WUKRmgHTegDaAhHQKubf+ERJ3B1fZQoaAZHQJBICT4cm0FoB03oA2gIR0Crm+FRP421dX2UKGgGR0CP5OrI5o4/aAdN6ANoCEdAq6Kc3l0YCXV9lChoBkdAkOGPgWJrL2gHTegDaAhHQKuk0++M6zV1fZQoaAZHQJH+PpC8e0ZoB03oA2gIR0Crq9nfuTibdX2UKGgGR0COY2QlKK51aAdN6ANoCEdAq6w6J0nw5XV9lChoBkdAkGYJ6MR6GGgHTegDaAhHQKuxVYYBNmF1fZQoaAZHQJHg9lOGj9JoB03oA2gIR0CrsrbCaZx8dX2UKGgGR0CT2auHerMlaAdN6ANoCEdAq7hBkZrHl3V9lChoBkdAkOnUtyxRmGgHTegDaAhHQKu4q9+w1SB1fZQoaAZHQJI+jmzSkTJoB03oA2gIR0CrvmHhjvuxdX2UKGgGR0CTIvMSK3uvaAdN6ANoCEdAq8By0WuX/3V9lChoBkdAkkz1jqfOEGgHTegDaAhHQKvJBaSs8xN1fZQoaAZHQJRiaKk2xY9oB03oA2gIR0CryW4zrNW3dX2UKGgGR0CTMOeD3/PxaAdN6ANoCEdAq85kWVNYbXV9lChoBkdAlIn5jDsMRmgHTegDaAhHQKvPvZA6dUd1fZQoaAZHQJI+pagVXV9oB03oA2gIR0Cr1a8cdYGMdX2UKGgGR0CSPMFiKBNFaAdN6ANoCEdAq9YYL5RCQnV9lChoBkdAlcSmfwqiGmgHTegDaAhHQKvbPC66J691fZQoaAZHQJS2tnyup0hoB03oA2gIR0Cr3SHUtqYadX2UKGgGR0CUBLgPVd5ZaAdN6ANoCEdAq+aa//NqxnV9lChoBkdAkkIMqjJuEWgHTegDaAhHQKvnIZ/CqId1fZQoaAZHQJF2ULiMo+hoB03oA2gIR0Cr7D+pGWledX2UKGgGR0CRN3LNfPX1aAdN6ANoCEdAq+2vAAQxvnV9lChoBkdAhAs/dAPd22gHTegDaAhHQKvzgGyHEdh1fZQoaAZHQJKxg0VJtixoB03oA2gIR0Cr8+eMqBmPdX2UKGgGR0CNTrfWtlqbaAdN6ANoCEdAq/j9mUW2w3V9lChoBkdAk9dO32EkB2gHTegDaAhHQKv6TbSJCSl1fZQoaAZHQJA/SJLuhK1oB03oA2gIR0CsAvnv+fh/dX2UKGgGR0CUo96Hj6vaaAdN6ANoCEdArAOoUzsQd3V9lChoBkdAlFYSz1K5CmgHTegDaAhHQKwJdRVp9JB1fZQoaAZHQJPoGiWVu79oB03oA2gIR0CsCseCTUy6dX2UKGgGR0CO2dnzxwyZaAdN6ANoCEdArBBT70nPV3V9lChoBkdAkzWeaOPvKGgHTegDaAhHQKwQtjin5zp1fZQoaAZHQI8fQTfzjFRoB03oA2gIR0CsFi3iJfpmdX2UKGgGR0COWn5s0pEyaAdN6ANoCEdArBd/yy2QXHV9lChoBkdAj6t0TlDF62gHTegDaAhHQKwey3o9s8B1fZQoaAZHQIkvI5zYEntoB03oA2gIR0CsH3cDB/I9dX2UKGgGR0CL5Py4FzMiaAdN6ANoCEdArCaPjsD4g3V9lChoBkdAjibUMG5c1WgHTegDaAhHQKwn7tBv73x1fZQoaAZHQJLt9E2HclBoB03oA2gIR0CsLW2eQMhHdX2UKGgGR0CTFhHn2ZiNaAdN6ANoCEdArC3TzoUzsXV9lChoBkdAlEChDb8FZGgHTegDaAhHQKwyxpxFRYR1fZQoaAZHQJWKbi++M61oB03oA2gIR0CsNBVcdHUddX2UKGgGR0CVZm/8EV32aAdN6ANoCEdArDn4YNy5qnV9lChoBkdAks0hHbypaWgHTegDaAhHQKw6l2ki2Ul1fZQoaAZHQJK3IxYaHbhoB03oA2gIR0CsQqYqG1x9dX2UKGgGR0CVjY+cH4XXaAdN6ANoCEdArER3FirksHV9lChoBkdAlKpZElVtGmgHTegDaAhHQKxJ75D7ZWd1fZQoaAZHQJYNEOy3TeBoB03oA2gIR0CsSlQ9q1w6dX2UKGgGR0CU9GV/+bVjaAdN6ANoCEdArE9ie05U+HV9lChoBkdAk/ziKrJbMWgHTegDaAhHQKxQrtiQT251fZQoaAZHQJSU5FVktmNoB03oA2gIR0CsVlXbEgnudX2UKGgGR0CUOtwco6S1aAdN6ANoCEdArFa5VENOM3V9lChoBkdAkrHFTisGPmgHTegDaAhHQKxdsZa3Zwp1fZQoaAZHQJFkhGtp22ZoB03oA2gIR0CsX+aJZW7wdX2UKGgGR0CTjQZDiOvMaAdN6ANoCEdArGa5LdvbXnV9lChoBkdAiVbBtDUmUmgHTegDaAhHQKxnJDmbLEF1fZQoaAZHQIXyBKDkELZoB03oA2gIR0CsbBkm6XjVdX2UKGgGR0B93SRs/IKdaAdN6ANoCEdArG1laKUFCHV9lChoBkdAlAw6nzg/DGgHTegDaAhHQKxy6BLf1pV1fZQoaAZHQJTB3DEWIoFoB03oA2gIR0Csc1GrKeTWdX2UKGgGR0CUMrqoIfKZaAdN6ANoCEdArHjYXfqHGnV9lChoBkdAkT1nb/Ot4mgHTegDaAhHQKx66fg75mB1fZQoaAZHQIrYGkep4r1oB03oA2gIR0Csg1Pw/gR9dX2UKGgGR0CB9w7e2uxKaAdN6ANoCEdArIO6uW8h93V9lChoBkdAkgLD/Q0GeWgHTegDaAhHQKyIkh9LHuJ1fZQoaAZHQH/t5h8YyftoB03oA2gIR0Csieq6e5FxdX2UKGgGR0CBmUZbY9PlaAdN6ANoCEdArI/5DLKV6nV9lChoBkdAgJgW2gFotmgHTegDaAhHQKyQY3w1BMV1fZQoaAZHQHq9cvduYQdoB03oA2gIR0CslWW69TP0dX2UKGgGR0CFyEt7rs0IaAdN6ANoCEdArJc3epGWlnV9lChoBkdAkVWlafSQYGgHTegDaAhHQKygXxkNF0B1fZQoaAZHQIL7MCzTnaFoB03oA2gIR0CsoQkPDpC8dX2UKGgGR0COsHapxWDIaAdN6ANoCEdArKYJ7JGOMnV9lChoBkdAkLbsTN+so2gHTegDaAhHQKynV6uW8h91fZQoaAZHQIgJ1FjNILBoB03oA2gIR0CsrQVeKKpDdX2UKGgGR0CKRIOaOPvKaAdN6ANoCEdArK1uA/cFhXV9lChoBkdAkMNJMYdhiWgHTegDaAhHQKyyfOO801t1fZQoaAZHQI/m/xx1gYxoB03oA2gIR0Css88jAzpHdX2UKGgGR0CUs8CJXQt0aAdN6ANoCEdArLvpkmQbM3V9lChoBkdAk0ixN7BwdmgHTegDaAhHQKy8nsu3+dd1fZQoaAZHQJQFcKu0TlFoB03oA2gIR0CswuoNEw36dX2UKGgGR0CUIOFPBSDRaAdN6ANoCEdArMQ9yaNMoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80fe09a40331f2584682e3910df27f63403d4d2866fdd5046eea11117410d6e1
|
3 |
+
size 1019244
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1197.965620642039, "std_reward": 173.2974316552095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T17:50:51.841062"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c640de3b016d610d7775fd520f45888bbc8088c5ab9111ae41fc55da40988c77
|
3 |
+
size 2136
|