File size: 1,778 Bytes
b552a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
model-index:
- name: bert_adaptation_referencias_de_vinos
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_adaptation_referencias_de_vinos

This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1276

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3446        | 1.0   | 375  | 2.7051          |
| 2.6996        | 2.0   | 750  | 2.5966          |
| 2.4801        | 3.0   | 1125 | 2.4287          |
| 2.3533        | 4.0   | 1500 | 2.3303          |
| 2.2513        | 5.0   | 1875 | 2.2400          |
| 2.2163        | 6.0   | 2250 | 2.2903          |
| 2.1477        | 7.0   | 2625 | 2.1481          |
| 2.1131        | 8.0   | 3000 | 2.1569          |
| 2.056         | 9.0   | 3375 | 2.1977          |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3