Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- Llama-3.2-3B
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/meta-llama/Llama-3.2-3B
|
14 |
+
|
15 |
+
|
16 |
+
### Inference Clients/UIs
|
17 |
+
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
18 |
+
* [KoboldCPP](https://github.com/LostRuins/koboldcpp)
|
19 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
20 |
+
* [ollama](https://github.com/ollama/ollama)
|
21 |
+
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
# From original readme
|
26 |
+
|
27 |
+
Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out:
|
28 |
+
|
29 |
+
- 16B total params, 2.4B active params, scratch training with 5.7T tokens
|
30 |
+
- Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks
|
31 |
+
- Deployable on single 40G GPU, fine-tunable on 8x80G GPUs
|
32 |
+
|
33 |
+
DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation.
|
34 |
+
|
35 |
+
## 7. How to run locally
|
36 |
+
|
37 |
+
**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
|
38 |
+
### Inference with Huggingface's Transformers
|
39 |
+
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
40 |
+
|
41 |
+
#### Text Completion
|
42 |
+
```python
|
43 |
+
import torch
|
44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
45 |
+
|
46 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite"
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
49 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
50 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
51 |
+
|
52 |
+
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
53 |
+
inputs = tokenizer(text, return_tensors="pt")
|
54 |
+
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
55 |
+
|
56 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
+
print(result)
|
58 |
+
```
|
59 |
+
|
60 |
+
#### Chat Completion
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
64 |
+
|
65 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
68 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
69 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
70 |
+
|
71 |
+
messages = [
|
72 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
73 |
+
]
|
74 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
75 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
76 |
+
|
77 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
78 |
+
print(result)
|
79 |
+
```
|
80 |
+
|
81 |
+
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
|
82 |
+
|
83 |
+
An example of chat template is as belows:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
<|begin▁of▁sentence|>User: {user_message_1}
|
87 |
+
|
88 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
89 |
+
|
90 |
+
Assistant:
|
91 |
+
```
|
92 |
+
|
93 |
+
You can also add an optional system message:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
<|begin▁of▁sentence|>{system_message}
|
97 |
+
|
98 |
+
User: {user_message_1}
|
99 |
+
|
100 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
101 |
+
|
102 |
+
Assistant:
|
103 |
+
```
|
104 |
+
|
105 |
+
### Inference with vLLM (recommended)
|
106 |
+
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
|
107 |
+
|
108 |
+
```python
|
109 |
+
from transformers import AutoTokenizer
|
110 |
+
from vllm import LLM, SamplingParams
|
111 |
+
|
112 |
+
max_model_len, tp_size = 8192, 1
|
113 |
+
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
115 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
116 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
117 |
+
|
118 |
+
messages_list = [
|
119 |
+
[{"role": "user", "content": "Who are you?"}],
|
120 |
+
[{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
|
121 |
+
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
|
122 |
+
]
|
123 |
+
|
124 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
125 |
+
|
126 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
127 |
+
|
128 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
129 |
+
print(generated_text)
|
130 |
+
```
|
131 |
+
|
132 |
+
### LangChain Support
|
133 |
+
Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/).
|
134 |
+
Here is an example:
|
135 |
+
|
136 |
+
```
|
137 |
+
from langchain_openai import ChatOpenAI
|
138 |
+
llm = ChatOpenAI(
|
139 |
+
model='deepseek-chat',
|
140 |
+
openai_api_key=<your-deepseek-api-key>,
|
141 |
+
openai_api_base='https://api.deepseek.com/v1',
|
142 |
+
temperature=0.85,
|
143 |
+
ma
|