duyho commited on
Commit
b87fd90
1 Parent(s): 52a3ca3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1695
21
+ - Answer: {'precision': 0.35993485342019543, 'recall': 0.546353522867738, 'f1': 0.4339715267550319, 'number': 809}
22
+ - Header: {'precision': 0.3488372093023256, 'recall': 0.25210084033613445, 'f1': 0.2926829268292683, 'number': 119}
23
+ - Question: {'precision': 0.5217762596071733, 'recall': 0.5737089201877934, 'f1': 0.5465116279069767, 'number': 1065}
24
+ - Overall Precision: 0.4358
25
+ - Overall Recall: 0.5434
26
+ - Overall F1: 0.4837
27
+ - Overall Accuracy: 0.5907
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7983 | 1.0 | 10 | 1.5799 | {'precision': 0.02035830618892508, 'recall': 0.030902348578491966, 'f1': 0.024545900834560624, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.19827586206896552, 'recall': 0.1295774647887324, 'f1': 0.15672913117546847, 'number': 1065} | 0.0847 | 0.0818 | 0.0832 | 0.3629 |
60
+ | 1.5573 | 2.0 | 20 | 1.4500 | {'precision': 0.11375661375661375, 'recall': 0.2126081582200247, 'f1': 0.14821197759586383, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21101928374655649, 'recall': 0.3596244131455399, 'f1': 0.2659722222222222, 'number': 1065} | 0.1668 | 0.2785 | 0.2086 | 0.4045 |
61
+ | 1.3717 | 3.0 | 30 | 1.2959 | {'precision': 0.16349108789182545, 'recall': 0.3288009888751545, 'f1': 0.21839080459770116, 'number': 809} | {'precision': 0.061224489795918366, 'recall': 0.025210084033613446, 'f1': 0.03571428571428571, 'number': 119} | {'precision': 0.2739408009286129, 'recall': 0.4431924882629108, 'f1': 0.3385939741750359, 'number': 1065} | 0.2180 | 0.3718 | 0.2749 | 0.4466 |
62
+ | 1.2568 | 4.0 | 40 | 1.2032 | {'precision': 0.20166898470097358, 'recall': 0.3584672435105068, 'f1': 0.258121940364931, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.16806722689075632, 'f1': 0.19704433497536947, 'number': 119} | {'precision': 0.3354214123006834, 'recall': 0.5530516431924882, 'f1': 0.4175824175824176, 'number': 1065} | 0.2743 | 0.4511 | 0.3411 | 0.4942 |
63
+ | 1.1591 | 5.0 | 50 | 1.1897 | {'precision': 0.23584277148567623, 'recall': 0.43757725587144625, 'f1': 0.30649350649350654, 'number': 809} | {'precision': 0.27848101265822783, 'recall': 0.18487394957983194, 'f1': 0.2222222222222222, 'number': 119} | {'precision': 0.36172765446910615, 'recall': 0.5661971830985916, 'f1': 0.44143484626647145, 'number': 1065} | 0.3015 | 0.4912 | 0.3737 | 0.5069 |
64
+ | 1.075 | 6.0 | 60 | 1.1092 | {'precision': 0.2832044975404076, 'recall': 0.49814585908529047, 'f1': 0.36111111111111116, 'number': 809} | {'precision': 0.34375, 'recall': 0.18487394957983194, 'f1': 0.24043715846994534, 'number': 119} | {'precision': 0.4609571788413098, 'recall': 0.5154929577464789, 'f1': 0.48670212765957444, 'number': 1065} | 0.3637 | 0.4887 | 0.4170 | 0.5650 |
65
+ | 1.0011 | 7.0 | 70 | 1.0638 | {'precision': 0.30843373493975906, 'recall': 0.4746600741656366, 'f1': 0.3739045764362221, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.19327731092436976, 'f1': 0.24468085106382975, 'number': 119} | {'precision': 0.47068021892103207, 'recall': 0.5652582159624413, 'f1': 0.5136518771331057, 'number': 1065} | 0.3891 | 0.5063 | 0.4400 | 0.5852 |
66
+ | 0.9357 | 8.0 | 80 | 1.1937 | {'precision': 0.3132867132867133, 'recall': 0.553770086526576, 'f1': 0.4001786511835641, 'number': 809} | {'precision': 0.2987012987012987, 'recall': 0.19327731092436976, 'f1': 0.23469387755102045, 'number': 119} | {'precision': 0.48117839607201307, 'recall': 0.5521126760563381, 'f1': 0.5142107564494972, 'number': 1065} | 0.3881 | 0.5314 | 0.4485 | 0.5559 |
67
+ | 0.8751 | 9.0 | 90 | 1.0553 | {'precision': 0.3413173652694611, 'recall': 0.4932014833127318, 'f1': 0.40343781597573314, 'number': 809} | {'precision': 0.29577464788732394, 'recall': 0.17647058823529413, 'f1': 0.2210526315789474, 'number': 119} | {'precision': 0.47987851176917234, 'recall': 0.5934272300469483, 'f1': 0.5306465155331653, 'number': 1065} | 0.4114 | 0.5278 | 0.4624 | 0.5986 |
68
+ | 0.8585 | 10.0 | 100 | 1.1844 | {'precision': 0.33745454545454545, 'recall': 0.5735475896168108, 'f1': 0.4249084249084249, 'number': 809} | {'precision': 0.37333333333333335, 'recall': 0.23529411764705882, 'f1': 0.28865979381443296, 'number': 119} | {'precision': 0.5013333333333333, 'recall': 0.5295774647887324, 'f1': 0.5150684931506849, 'number': 1065} | 0.4101 | 0.5299 | 0.4623 | 0.5706 |
69
+ | 0.7894 | 11.0 | 110 | 1.1752 | {'precision': 0.3395311236863379, 'recall': 0.519159456118665, 'f1': 0.41055718475073316, 'number': 809} | {'precision': 0.4, 'recall': 0.23529411764705882, 'f1': 0.29629629629629634, 'number': 119} | {'precision': 0.5020885547201337, 'recall': 0.564319248826291, 'f1': 0.5313881520778072, 'number': 1065} | 0.4189 | 0.5263 | 0.4665 | 0.5781 |
70
+ | 0.7809 | 12.0 | 120 | 1.2025 | {'precision': 0.34820031298904536, 'recall': 0.5500618046971569, 'f1': 0.4264494489698131, 'number': 809} | {'precision': 0.37037037037037035, 'recall': 0.25210084033613445, 'f1': 0.3, 'number': 119} | {'precision': 0.5093062605752962, 'recall': 0.5652582159624413, 'f1': 0.5358255451713396, 'number': 1065} | 0.4238 | 0.5404 | 0.4751 | 0.5800 |
71
+ | 0.7452 | 13.0 | 130 | 1.1974 | {'precision': 0.3550436854646545, 'recall': 0.5525339925834364, 'f1': 0.4323017408123791, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.23529411764705882, 'f1': 0.28426395939086296, 'number': 119} | {'precision': 0.5247787610619469, 'recall': 0.5568075117370892, 'f1': 0.5403189066059226, 'number': 1065} | 0.4329 | 0.5359 | 0.4789 | 0.5830 |
72
+ | 0.7108 | 14.0 | 140 | 1.1267 | {'precision': 0.373015873015873, 'recall': 0.522867737948084, 'f1': 0.43540916109109623, 'number': 809} | {'precision': 0.3448275862068966, 'recall': 0.25210084033613445, 'f1': 0.2912621359223301, 'number': 119} | {'precision': 0.5193548387096775, 'recall': 0.6046948356807512, 'f1': 0.5587852494577007, 'number': 1065} | 0.4458 | 0.5504 | 0.4926 | 0.6044 |
73
+ | 0.702 | 15.0 | 150 | 1.1695 | {'precision': 0.35993485342019543, 'recall': 0.546353522867738, 'f1': 0.4339715267550319, 'number': 809} | {'precision': 0.3488372093023256, 'recall': 0.25210084033613445, 'f1': 0.2926829268292683, 'number': 119} | {'precision': 0.5217762596071733, 'recall': 0.5737089201877934, 'f1': 0.5465116279069767, 'number': 1065} | 0.4358 | 0.5434 | 0.4837 | 0.5907 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.2
79
+ - Pytorch 2.1.0+cu121
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1709773612.360e1c85cbe7.2486.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:75fb8ca527da30a9abb3ea64d9d48d33b1648e911cb20e9cb773c795dd3e9cda
3
- size 14669
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c691dd480d2f8968ccb627ce0fd066f41028e53eab0e0e7a8152fa2e4cae86c
3
+ size 15738
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff