File size: 1,800 Bytes
37f00cc
1c0d23c
 
 
 
 
 
 
2d57902
1c0d23c
 
 
37f00cc
 
1c0d23c
 
37f00cc
1c0d23c
37f00cc
1c0d23c
 
 
 
 
 
 
 
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
37f00cc
1c0d23c
 
 
 
 
 
 
 
37f00cc
1c0d23c
37f00cc
1c0d23c
 
 
 
 
37f00cc
 
1c0d23c
37f00cc
1c0d23c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: duraad/nep-spell-mbart-new
model-index:
- name: nep-spell-mbart-new
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nep-spell-mbart-new

This model is a fine-tuned version of [duraad/nep-spell-mbart-new](https://huggingface.co/duraad/nep-spell-mbart-new) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0020
- Accuracy: 0.7987
- Precision: 0.7987
- Recall: 0.7987
- F1: 0.7987
- Exact Match: 0.7987

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Exact Match |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| 0.0046        | 0.79  | 1000 | 0.0030          | 0.75     | 0.75      | 0.75   | 0.75   | 0.75        |
| 0.002         | 1.57  | 2000 | 0.0024          | 0.7799   | 0.7799    | 0.7799 | 0.7799 | 0.7799      |
| 0.0008        | 2.36  | 3000 | 0.0020          | 0.7987   | 0.7987    | 0.7987 | 0.7987 | 0.7987      |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1