File size: 1,800 Bytes
37f00cc 1c0d23c 2d57902 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c 37f00cc 1c0d23c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: duraad/nep-spell-mbart-new
model-index:
- name: nep-spell-mbart-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nep-spell-mbart-new
This model is a fine-tuned version of [duraad/nep-spell-mbart-new](https://huggingface.co/duraad/nep-spell-mbart-new) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0020
- Accuracy: 0.7987
- Precision: 0.7987
- Recall: 0.7987
- F1: 0.7987
- Exact Match: 0.7987
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Exact Match |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| 0.0046 | 0.79 | 1000 | 0.0030 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
| 0.002 | 1.57 | 2000 | 0.0024 | 0.7799 | 0.7799 | 0.7799 | 0.7799 | 0.7799 |
| 0.0008 | 2.36 | 3000 | 0.0020 | 0.7987 | 0.7987 | 0.7987 | 0.7987 | 0.7987 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
|