File size: 69,087 Bytes
0f0c271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acadfd0
 
0f0c271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
# coding=utf-8
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SAM model."""

import collections
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import Tensor, nn

from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
)
from transformers.models.sam.configuration_sam import SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
from .configuration_sam_hq import SamHQConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "SamConfig"
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"


@dataclass
class SamVisionEncoderOutput(ModelOutput):
    """
    Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
    layer to the pooler_output.

    Args:
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    image_embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class SamImageSegmentationOutput(ModelOutput):
    """
    Base class for Segment-Anything model's output

    Args:
        iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`):
            The iou scores of the predicted masks.
        pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`):
            The predicted low resolutions masks. Needs to be post-processed by the processor
        vision_hidden_states  (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
        vision_attentions  (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    iou_scores: torch.FloatTensor = None
    pred_masks: torch.FloatTensor = None
    vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


class SamPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size
        image_size = (
            image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        )
        patch_size = (
            patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        )
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values):
        batch_size, num_channels, height, width = pixel_values.shape
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
        return embeddings


class SamMLPBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
        self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
        self.act = ACT2FN[config.hidden_act]

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.lin1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.lin2(hidden_states)
        return hidden_states


# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
class SamLayerNorm(nn.Module):
    r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
    width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError(f"Unsupported data format: {self.data_format}")
        self.normalized_shape = (normalized_shape,)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.data_format == "channels_last":
            x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            input_dtype = x.dtype
            x = x.float()
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = x.to(dtype=input_dtype)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class SamAttention(nn.Module):
    """
    SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
    values.
    """

    def __init__(self, config, downsample_rate=None):
        super().__init__()
        self.hidden_size = config.hidden_size

        downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate

        self.internal_dim = config.hidden_size // downsample_rate
        self.num_attention_heads = config.num_attention_heads
        if self.internal_dim % config.num_attention_heads != 0:
            raise ValueError("num_attention_heads must divide hidden_size.")

        self.q_proj = nn.Linear(self.hidden_size, self.internal_dim)
        self.k_proj = nn.Linear(self.hidden_size, self.internal_dim)
        self.v_proj = nn.Linear(self.hidden_size, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, self.hidden_size)

    def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor:
        batch, point_batch_size, n_tokens, channel = hidden_states.shape
        c_per_head = channel // num_attention_heads
        hidden_states = hidden_states.reshape(
            batch * point_batch_size, n_tokens, num_attention_heads, c_per_head
        )
        return hidden_states.transpose(1, 2)

    def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor:
        batch, n_heads, n_tokens, c_per_head = hidden_states.shape
        hidden_states = hidden_states.transpose(1, 2)
        return hidden_states.reshape(
            batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head
        )

    def forward(
        self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None
    ) -> Tensor:
        # Input projections
        query = self.q_proj(query)
        key = self.k_proj(key)
        value = self.v_proj(value)

        point_batch_size = query.shape[1]
        # Separate into heads
        query = self._separate_heads(query, self.num_attention_heads)
        key = self._separate_heads(key, self.num_attention_heads)
        value = self._separate_heads(value, self.num_attention_heads)

        # SamAttention
        _, _, _, c_per_head = query.shape
        attn = query @ key.permute(
            0, 1, 3, 2
        )  # batch_size * point_batch_size  x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        if attention_similarity is not None:
            attn = attn + attention_similarity
            attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ value
        out = self._recombine_heads(out, point_batch_size)
        out = self.out_proj(out)

        return out


class SamTwoWayAttentionBlock(nn.Module):
    def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False):
        """
        A transformer block with four layers:
            (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
            sparse inputs (4) cross attention of dense inputs -> sparse inputs

        Arguments:
            config (`SamMaskDecoderConfig`):
                The configuration file used to instantiate the block
            attention_downsample_rate (*optionalk*, int, defaults to 2):
                The downsample ratio of the block used to reduce the inner dim of the attention.
            skip_first_layer_pe (*optional*, bool, defaults to `False`):
                Whether or not to skip the addition of the query_point_embedding on the first layer.
        """
        super().__init__()

        self.hidden_size = config.hidden_size
        self.layer_norm_eps = config.layer_norm_eps

        self.self_attn = SamAttention(config, downsample_rate=1)
        self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)

        self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate)
        self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)

        self.mlp = SamMLPBlock(config)
        self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)

        self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
        self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate)

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
        self,
        queries: Tensor,
        keys: Tensor,
        query_point_embedding: Tensor,
        key_point_embedding: Tensor,
        attention_similarity: Tensor,
        output_attentions: bool = False,
    ):
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(query=queries, key=queries, value=queries)
        else:
            query = queries + query_point_embedding
            attn_out = self.self_attn(query=query, key=query, value=queries)
            queries = queries + attn_out
        queries = self.layer_norm1(queries)

        # Cross attention block, tokens attending to image embedding
        query = queries + query_point_embedding
        key = keys + key_point_embedding

        attn_out = self.cross_attn_token_to_image(
            query=query, key=key, value=keys, attention_similarity=attention_similarity
        )
        queries = queries + attn_out

        queries = self.layer_norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.layer_norm3(queries)

        # Cross attention block, image embedding attending to tokens
        query = queries + query_point_embedding
        key = keys + key_point_embedding

        attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
        keys = keys + attn_out

        keys = self.layer_norm4(keys)

        outputs = (queries, keys)

        if output_attentions:
            outputs = outputs + (attn_out,)
        else:
            outputs = outputs + (None,)

        return outputs


class SamTwoWayTransformer(nn.Module):
    def __init__(self, config: SamMaskDecoderConfig):
        super().__init__()
        self.config = config

        self.num_hidden_layers = config.num_hidden_layers
        self.layers = nn.ModuleList()

        for i in range(self.num_hidden_layers):
            self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0)))

        self.final_attn_token_to_image = SamAttention(config)
        self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size)

    def forward(
        self,
        point_embeddings: Tensor,
        image_embeddings: Tensor,
        image_positional_embeddings: Tensor,
        attention_similarity: Tensor,
        target_embedding=None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        output_attentions = (
            output_attentions if output_attentions is not None else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        all_attentions = ()

        if image_embeddings is None:
            raise ValueError("You have to specify an image_embedding")

        image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
        image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)

        # Prepare queries
        queries = point_embeddings
        keys = image_embeddings

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            if target_embedding is not None:
                queries += target_embedding

            queries, keys, attention_outputs = layer(
                queries=queries,
                keys=keys,
                query_point_embedding=point_embeddings,
                key_point_embedding=image_positional_embeddings,
                attention_similarity=attention_similarity,
                output_attentions=output_attentions,
            )

            if output_attentions:
                all_attentions = all_attentions + (attention_outputs,)

        # Apply the final attenion layer from the points to the image
        query = queries + point_embeddings
        key = keys + image_positional_embeddings

        attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)

        queries = queries + attn_out
        queries = self.layer_norm_final_attn(queries)
        return queries, keys, all_attentions


class SamFeedForward(nn.Module):
    def __init__(
        self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False
    ):
        super().__init__()
        self.num_layers = num_layers
        self.activation = nn.ReLU()
        self.proj_in = nn.Linear(input_dim, hidden_dim)
        self.proj_out = nn.Linear(hidden_dim, output_dim)
        self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)])
        self.sigmoid_output = sigmoid_output

    def forward(self, hidden_states):
        hidden_states = self.proj_in(hidden_states)
        hidden_states = self.activation(hidden_states)
        for layer in self.layers:
            hidden_states = self.activation(layer(hidden_states))

        hidden_states = self.proj_out(hidden_states)
        if self.sigmoid_output:
            hidden_states = F.sigmoid(hidden_states)
        return hidden_states


class SamMaskDecoderHQ(nn.Module):
    def __init__(self, config: SamMaskDecoderConfig):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.vision_encoder_dim = config.vision_encoder_dim

        self.num_multimask_outputs = config.num_multimask_outputs
        self.num_mask_tokens = config.num_multimask_outputs + 1

        self.iou_token = nn.Embedding(1, self.hidden_size)
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size)

        self.transformer = SamTwoWayTransformer(config)

        # should we create a new class for this?
        self.upscale_conv1 = nn.ConvTranspose2d(
            self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2
        )
        self.upscale_conv2 = nn.ConvTranspose2d(
            self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2
        )
        self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first")
        self.activation = nn.GELU()

        mlps_list = []
        for _ in range(self.num_mask_tokens):
            mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)]
        self.output_hypernetworks_mlps = nn.ModuleList(mlps_list)

        self.iou_prediction_head = SamFeedForward(
            self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth
        )

        # HQ-SAM parameters
        self.hf_token = nn.Embedding(1, self.hidden_size)  # HQ-Ouptput-Token
        self.hf_mlp = SamFeedForward(
            self.hidden_size, self.hidden_size, self.hidden_size // 8, 3
        )  # corresponding new MLP layer for HQ-Ouptput-Token
        self.num_mask_tokens = self.num_mask_tokens + 1

        # three conv fusion layers for obtaining HQ-Feature
        self.compress_vit_feat = nn.Sequential(
            nn.ConvTranspose2d(self.vision_encoder_dim, self.hidden_size, kernel_size=2, stride=2),
            SamLayerNorm(self.hidden_size, data_format="channels_first"),
            nn.GELU(),
            nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 8, kernel_size=2, stride=2),
        )

        self.embedding_encoder = nn.Sequential(
            nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2),
            SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
            nn.GELU(),
            nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2),
        )
        self.embedding_maskfeature = nn.Sequential(
            nn.Conv2d(self.hidden_size // 8, self.hidden_size // 4, 3, 1, 1),
            SamLayerNorm(self.hidden_size // 4, data_format="channels_first"),
            nn.GELU(),
            nn.Conv2d(self.hidden_size // 4, self.hidden_size // 8, 3, 1, 1),
        )

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_positional_embeddings: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
        intermediate_vision_embeddings: torch.Tensor,
        hq_token_only: bool = False,
        output_attentions: Optional[bool] = None,
        attention_similarity: torch.Tensor = None,
        target_embedding: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Args:
            image_embeddings (`torch.Tensor`):
                the embeddings from the image encoder
            image_positional_embedding (`torch.Tensor`):
                positional encoding with the shape of image_embeddings
            sparse_prompt_embeddings (`torch.Tensor`):
                The embeddings of the points and boxes
            dense_prompt_embeddings (`torch.Tensor`):
                the embeddings of the mask inputs
            multimask_output (bool):
                Whether to return multiple masks or a single mask.
            output_attentions (bool, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
        """
        batch_size, num_channels, height, width = image_embeddings.shape
        point_batch_size = sparse_prompt_embeddings.shape[1]

        vit_inter_features = intermediate_vision_embeddings[0].permute(
            0, 3, 1, 2
        )  # early-layer ViT feature, after 1st global attention block in ViT
        hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_inter_features)

        # Concatenate output tokens
        output_tokens = torch.cat(
            [self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0
        )
        output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1)

        if sparse_prompt_embeddings.sum().item() != 0:
            tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2)
        else:
            tokens = output_tokens
        point_embeddings = tokens.to(self.iou_token.weight.dtype)

        # Expand per-image data in batch direction to be per-point
        image_embeddings = image_embeddings + dense_prompt_embeddings
        image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0)
        image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0)

        # Run the transformer, image_positional_embedding are consumed
        point_embedding, image_embeddings, attentions = self.transformer(
            point_embeddings=point_embeddings,
            image_embeddings=image_embeddings,
            image_positional_embeddings=image_positional_embeddings,
            attention_similarity=attention_similarity,
            target_embedding=target_embedding,
            output_attentions=output_attentions,
        )
        iou_token_out = point_embedding[:, :, 0, :]
        mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        image_embeddings = image_embeddings.transpose(2, 3).reshape(
            batch_size * point_batch_size, num_channels, height, width
        )

        upscaled_embedding_sam = self.upscale_conv1(image_embeddings)
        upscaled_embedding_sam = self.activation(self.upscale_layer_norm(upscaled_embedding_sam))
        upscaled_embedding_sam = self.activation(self.upscale_conv2(upscaled_embedding_sam))

        upscaled_embedding_hq = self.embedding_maskfeature(upscaled_embedding_sam) + hq_features.repeat(
            batch_size * point_batch_size, 1, 1, 1
        )

        hyper_in_list = []
        for i in range(self.num_mask_tokens):
            mask_out_embedding = mask_tokens_out[:, :, i, :]
            if i < self.num_mask_tokens - 1:
                hyper = self.output_hypernetworks_mlps[i](mask_out_embedding)
            else:
                hyper = self.hf_mlp(mask_out_embedding)
            hyper_in_list.append(hyper)
        hyper_in = torch.stack(hyper_in_list, dim=2)

        _, num_channels, height, width = upscaled_embedding_sam.shape
        upscaled_embedding_sam = upscaled_embedding_sam.reshape(
            batch_size, point_batch_size, num_channels, height * width
        )
        upscaled_embedding_hq = upscaled_embedding_hq.reshape(
            batch_size, point_batch_size, num_channels, height * width
        )

        masks_sam = (hyper_in[:, :, : self.num_mask_tokens - 1] @ upscaled_embedding_sam).reshape(
            batch_size, point_batch_size, -1, height, width
        )
        masks_hq = (hyper_in[:, :, self.num_mask_tokens - 1 :] @ upscaled_embedding_hq).reshape(
            batch_size, point_batch_size, 1, height, width
        )
        masks = torch.cat([masks_sam, masks_hq], dim=2)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)

        # Select the correct mask or masks for output
        if multimask_output:
            # mask with highest score
            mask_slice = slice(1, self.num_mask_tokens - 1)
            iou_pred = iou_pred[:, :, mask_slice]
            iou_pred, max_iou_idx = torch.max(iou_pred, dim=2)
            masks_multi = masks[:, :, mask_slice, :, :]
            masks_sam = masks_multi[
                torch.arange(batch_size)[:, None, None],
                torch.arange(point_batch_size)[None, :, None],
                max_iou_idx,
                :,
                :,
            ]
        else:
            # single mask output, default
            mask_slice = slice(0, 1)
            iou_pred = iou_pred[:, :, mask_slice]
            masks_sam = masks[:, :, mask_slice, :, :]
        # masks = masks[:, :, mask_slice, :, :]
        # iou_pred = iou_pred[:, :, mask_slice]
        if hq_token_only:
            masks = masks_hq
        else:
            masks = masks_sam + masks_hq

        outputs = (masks, iou_pred)

        if output_attentions:
            outputs = outputs + (attentions,)
        else:
            outputs = outputs + (None,)

        return outputs


class SamPositionalEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.scale = config.hidden_size // 2
        self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats)))

    def forward(self, input_coords, input_shape=None):
        """Positionally encode points that are normalized to [0,1]."""
        coordinates = input_coords.clone()

        if input_shape is not None:
            coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1]
            coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0]

        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coordinates = 2 * coordinates - 1
        coordinates = coordinates.to(self.positional_embedding.dtype)
        coordinates = coordinates @ self.positional_embedding
        coordinates = 2 * np.pi * coordinates
        # outputs d_1 x ... x d_n x channel shape
        return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1)


class SamMaskEmbedding(nn.Module):
    def __init__(self, config: SamPromptEncoderConfig):
        super().__init__()
        self.mask_input_channels = config.mask_input_channels // 4
        self.activation = ACT2FN[config.hidden_act]
        self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2)
        self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1)
        self.layer_norm1 = SamLayerNorm(
            self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first"
        )
        self.layer_norm2 = SamLayerNorm(
            self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first"
        )

    def forward(self, masks):
        hidden_states = self.conv1(masks)
        hidden_states = self.layer_norm1(hidden_states)
        hidden_states = self.activation(hidden_states)

        hidden_states = self.conv2(hidden_states)
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.activation(hidden_states)
        dense_embeddings = self.conv3(hidden_states)
        return dense_embeddings


class SamPromptEncoder(nn.Module):
    def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding):
        super().__init__()
        self.shared_embedding = shared_patch_embedding
        self.mask_embed = SamMaskEmbedding(config)
        self.no_mask_embed = nn.Embedding(1, config.hidden_size)

        self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
        self.input_image_size = config.image_size

        self.point_embed = nn.ModuleList(
            [nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)]
        )
        self.hidden_size = config.hidden_size
        self.not_a_point_embed = nn.Embedding(1, config.hidden_size)

    def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
        """Embeds point prompts."""
        points = points + 0.5  # Shift to center of pixel
        if pad:
            target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1])
            target_labels_shape = (points.shape[0], points.shape[1], 1)
            padding_point = torch.zeros(target_point_shape, device=points.device)
            padding_label = -torch.ones(target_labels_shape, device=labels.device)
            points = torch.cat([points, padding_point], dim=2)
            labels = torch.cat([labels, padding_label], dim=2)
        input_shape = (self.input_image_size, self.input_image_size)
        point_embedding = self.shared_embedding(points, input_shape)

        # torch.where and expanding the labels tensor is required by the ONNX export
        point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding)

        # This is required for the ONNX export. The dtype, device need to be explicitely
        # specificed as otherwise torch.onnx.export interprets as double
        point_embedding = torch.where(
            labels[..., None] != -10,
            point_embedding,
            torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device),
        )

        point_embedding = torch.where(
            (labels == 0)[:, :, :, None],
            point_embedding + self.point_embed[0].weight[None, None, :, :],
            point_embedding,
        )

        point_embedding = torch.where(
            (labels == 1)[:, :, :, None],
            point_embedding + self.point_embed[1].weight[None, None, :, :],
            point_embedding,
        )

        return point_embedding

    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
        """Embeds box prompts."""
        boxes = boxes + 0.5  # Shift to center of pixel
        batch_size, nb_boxes = boxes.shape[:2]
        coords = boxes.reshape(batch_size, nb_boxes, 2, 2)
        input_shape = (self.input_image_size, self.input_image_size)
        corner_embedding = self.shared_embedding(coords, input_shape)
        corner_embedding[:, :, 0, :] += self.point_embed[2].weight
        corner_embedding[:, :, 1, :] += self.point_embed[3].weight
        return corner_embedding

    def forward(
        self,
        input_points: Optional[Tuple[torch.Tensor, torch.Tensor]],
        input_labels: Optional[torch.Tensor],
        input_boxes: Optional[torch.Tensor],
        input_masks: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Embeds different types of prompts, returning both sparse and dense embeddings.

        Args:
            points (`torch.Tensor`, *optional*):
                point coordinates and labels to embed.
            boxes (`torch.Tensor`, *optional*):
                boxes to embed
            masks (`torch.Tensor`, *optional*):
                masks to embed
        """
        sparse_embeddings = None
        batch_size = 1
        target_device = self.shared_embedding.positional_embedding.device
        if input_points is not None:
            batch_size, point_batch_size = input_points.shape[:2]
            if input_labels is None:
                raise ValueError("If points are provided, labels must also be provided.")
            point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
            sparse_embeddings = point_embeddings
        if input_boxes is not None:
            batch_size = input_boxes.shape[0]
            box_embeddings = self._embed_boxes(input_boxes)
            if sparse_embeddings is None:
                sparse_embeddings = box_embeddings
            else:
                sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2)
        if input_masks is not None:
            dense_embeddings = self.mask_embed(input_masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
                batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1]
            )

        if sparse_embeddings is None:
            sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device)

        return sparse_embeddings, dense_embeddings


class SamVisionAttention(nn.Module):
    """Multi-head Attention block with relative position embeddings."""

    def __init__(self, config, window_size):
        super().__init__()
        input_size = (
            (config.image_size // config.patch_size, config.image_size // config.patch_size)
            if window_size == 0
            else (window_size, window_size)
        )

        self.num_attention_heads = config.num_attention_heads
        head_dim = config.hidden_size // config.num_attention_heads
        self.scale = head_dim**-0.5
        self.dropout = config.attention_dropout

        self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
        self.proj = nn.Linear(config.hidden_size, config.hidden_size)

        self.use_rel_pos = config.use_rel_pos
        if self.use_rel_pos:
            if input_size is None:
                raise ValueError("Input size must be provided if using relative positional encoding.")

            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
        """
        Get relative positional embeddings according to the relative positions of
            query and key sizes.

        Args:
            q_size (int):
                size of the query.
            k_size (int):
                size of key k.
            rel_pos (`torch.Tensor`):
                relative position embeddings (L, channel).

        Returns:
            Extracted positional embeddings according to relative positions.
        """
        max_rel_dist = int(2 * max(q_size, k_size) - 1)
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)

        # Scale the coords with short length if shapes for q and k are different.
        q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
        k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
        relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

        return rel_pos_resized[relative_coords.long()]

    def add_decomposed_rel_pos(
        self,
        attn: torch.Tensor,
        query: torch.Tensor,
        rel_pos_h: torch.Tensor,
        rel_pos_w: torch.Tensor,
        q_size: Tuple[int, int],
        k_size: Tuple[int, int],
    ) -> torch.Tensor:
        """
        Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
        https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py

        Args:
            attn (`torch.Tensor`):
                attention map.
            query (`torch.Tensor`):
                query q in the attention layer with shape (batch_size, query_height * query_width, channel).
            rel_pos_h (`torch.Tensor`):
                relative position embeddings (Lh, channel) for height axis.
            rel_pos_w (`torch.Tensor`):
                relative position embeddings (Lw, channel) for width axis.
            q_size (tuple):
                spatial sequence size of query q with (query_height, query_width).
            k_size (tuple):
                spatial sequence size of key k with (key_height, key_width).

        Returns:
            attn (`torch.Tensor`):
                attention map with added relative positional embeddings.
        """
        query_height, query_width = q_size
        key_height, key_width = k_size
        relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
        relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)

        batch_size, _, dim = query.shape
        reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
        rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
        rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
        attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
        attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
        attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
        return attn

    def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
        batch_size, height, width, _ = hidden_states.shape
        # qkv with shape (3, batch_size, nHead, height * width, channel)
        qkv = (
            self.qkv(hidden_states)
            .reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
            .permute(2, 0, 3, 1, 4)
        )
        # q, k, v with shape (batch_size * nHead, height * width, channel)
        query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(
            0
        )

        attn_weights = (query * self.scale) @ key.transpose(-2, -1)

        if self.use_rel_pos:
            attn_weights = self.add_decomposed_rel_pos(
                attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
            )

        attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
        attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)

        attn_output = self.proj(attn_output)

        if output_attentions:
            outputs = (attn_output, attn_weights)
        else:
            outputs = (attn_output, None)

        return outputs


class SamVisionLayer(nn.Module):
    def __init__(self, config, window_size):
        super().__init__()
        self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attn = SamVisionAttention(config, window_size)
        self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = SamMLPBlock(config)
        self.window_size = window_size

    def window_partition(
        self, hidden_states: torch.Tensor, window_size: int
    ) -> Tuple[torch.Tensor, Tuple[int, int]]:
        """
        Args:
        Partition into non-overlapping windows with padding if needed.
            hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
            size.

        Returns:
            windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
            (pad_height, pad_width): padded height and width before partition
        """
        batch_size, height, width, channel = hidden_states.shape

        pad_h = (window_size - height % window_size) % window_size
        pad_w = (window_size - width % window_size) % window_size
        hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
        pad_height, pad_width = height + pad_h, width + pad_w

        hidden_states = hidden_states.reshape(
            batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
        )
        windows = (
            hidden_states.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .reshape(-1, window_size, window_size, channel)
        )
        return windows, (pad_height, pad_width)

    def window_unpartition(
        self,
        windows: torch.Tensor,
        window_size: int,
        padding_shape: Tuple[int, int],
        original_shape: Tuple[int, int],
    ) -> torch.Tensor:
        """
        Args:
        Window unpartition into original sequences and removing padding.
            hidden_states (tensor):
                input tokens with [batch_size * num_windows, window_size, window_size, channel].
            window_size (int):
                window size.
            padding_shape (Tuple):
                padded height and width (pad_height, pad_width).
            original_shape (Tuple): original height and width (height, width) before padding.

        Returns:
            hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
        """
        pad_height, pad_width = padding_shape
        height, width = original_shape
        batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
        hidden_states = windows.reshape(
            batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
        )
        hidden_states = (
            hidden_states.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .reshape(batch_size, pad_height, pad_width, -1)
        )

        hidden_states = hidden_states[:, :height, :width, :].contiguous()
        return hidden_states

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        # Window partition
        if self.window_size > 0:
            height, width = hidden_states.shape[1], hidden_states.shape[2]
            hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)

        hidden_states, attn_weights = self.attn(
            hidden_states=hidden_states,
            output_attentions=output_attentions,
        )
        # Reverse window partition
        if self.window_size > 0:
            hidden_states = self.window_unpartition(
                hidden_states, self.window_size, padding_shape, (height, width)
            )

        hidden_states = residual + hidden_states
        layernorm_output = self.layer_norm2(hidden_states)
        hidden_states = hidden_states + self.mlp(layernorm_output)

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class SamVisionNeck(nn.Module):
    def __init__(self, config: SamVisionConfig):
        super().__init__()
        self.config = config

        self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
        self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
        self.conv2 = nn.Conv2d(
            config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False
        )
        self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first")

    def forward(self, hidden_states):
        hidden_states = hidden_states.permute(0, 3, 1, 2)
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.layer_norm1(hidden_states)

        hidden_states = self.conv2(hidden_states)
        hidden_states = self.layer_norm2(hidden_states)
        return hidden_states


class SamVisionEncoder(nn.Module):
    def __init__(self, config: SamVisionConfig):
        super().__init__()
        self.config = config
        self.image_size = config.image_size

        self.patch_embed = SamPatchEmbeddings(config)

        self.pos_embed = None
        if config.use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(
                    1,
                    config.image_size // config.patch_size,
                    config.image_size // config.patch_size,
                    config.hidden_size,
                )
            )

        self.layers = nn.ModuleList()
        for i in range(config.num_hidden_layers):
            layer = SamVisionLayer(
                config,
                window_size=config.window_size if i not in config.global_attn_indexes else 0,
            )
            self.layers.append(layer)

        self.neck = SamVisionNeck(config)

        self.gradient_checkpointing = False

    def get_input_embeddings(self):
        return self.patch_embed

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SamVisionEncoderOutput]:
        output_attentions = (
            output_attentions if output_attentions is not None else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.patch_embed(pixel_values)
        if self.pos_embed is not None:
            hidden_states = hidden_states + self.pos_embed

        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                )
            else:
                layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        hidden_states = self.neck(hidden_states)

        if not return_dict:
            outputs = (hidden_states,)
            if output_hidden_states:
                outputs = outputs + (all_hidden_states,)
            if output_attentions:
                outputs = outputs + (all_self_attentions,)
            return outputs

        return SamVisionEncoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class SamHQPreTrainedModel(PreTrainedModel):
    config_class = SamHQConfig
    base_model_prefix = "sam_hq"
    main_input_name = "pixel_values"
    _no_split_modules = ["SamVisionAttention"]

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


SAM_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`SamConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


SAM_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
            details.
        input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`):
            Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
            better results. The points can be obtained by passing a list of list of list to the processor that will
            create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the
            second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict
            per input point), the third dimension is the number of points per segmentation mask (it is possible to pass
            multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
            coordinates of the point. If a different number of points is passed either for each image, or for each
            mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
            computation of the embedding will be skipped for these points using the labels.
        input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`):
            Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
            official implementation, there are 3 types of labels

            - `1`: the point is a point that contains the object of interest
            - `0`: the point is a point that does not contain the object of interest
            - `-1`: the point corresponds to the background

            We added the label:

            - `-10`: the point is a padding point, thus should be ignored by the prompt encoder

            The padding labels should be automatically done by the processor.
        input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`):
            Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
            much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
            that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch
            size, the number of boxes per image and the coordinates of the top left and botton right point of the box.
            In the order (`x1`, `y1`, `x2`, `y2`):

            - `x1`: the x coordinate of the top left point of the input box
            - `y1`: the y coordinate of the top left point of the input box
            - `x2`: the x coordinate of the bottom right point of the input box
            - `y2`: the y coordinate of the bottom right point of the input box

        input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`):
            SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
            generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
            manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).

        image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`):
            Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
            efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
            method, and then feed them to the `forward` method instead of feeding the `pixel_values`.
        multimask_output (`bool`, *optional*):
            In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
            bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
            "best" mask, by specifying `multimask_output=False`.
        attention_similarity (`torch.FloatTensor`, *optional*):
            Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the
            model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
        target_embedding (`torch.FloatTensor`, *optional*):
            Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case
            the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
    " optional 2D location and bounding boxes.",
    SAM_START_DOCSTRING,
)
class SamHQModel(SamHQPreTrainedModel):
    _tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"]

    def __init__(self, config):
        super().__init__(config)
        self.shared_image_embedding = SamPositionalEmbedding(config.vision_config)

        self.vision_encoder = SamVisionEncoder(config.vision_config)
        self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding)
        if "vision_encoder_dim" not in config.mask_decoder_config.to_dict():
            config.mask_decoder_config.vision_encoder_dim = config.vision_config.hidden_size
        self.mask_decoder = SamMaskDecoderHQ(config.mask_decoder_config)

        self.post_init()

    def get_input_embeddings(self):
        return self.vision_encoder.get_input_embeddings()

    def get_image_wide_positional_embeddings(self):
        size = self.config.prompt_encoder_config.image_embedding_size
        target_device = self.shared_image_embedding.positional_embedding.device
        target_dtype = self.shared_image_embedding.positional_embedding.dtype
        grid = torch.ones((size, size), device=target_device, dtype=target_dtype)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / size
        x_embed = x_embed / size

        positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1))
        return positional_embedding.permute(2, 0, 1).unsqueeze(0)  # channel x height x width

    @torch.no_grad()
    def get_image_embeddings(
        self,
        pixel_values,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Returns the image embeddings by passing the pixel values through the vision encoder.

        Args:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
                Input pixel values
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

        """
        vision_output = self.vision_encoder(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        image_embeddings = vision_output[0]
        return image_embeddings

    @torch.no_grad()
    def get_prompt_embeddings(
        self,
        input_points: Optional[torch.FloatTensor] = None,
        input_labels: Optional[torch.LongTensor] = None,
        input_boxes: Optional[torch.FloatTensor] = None,
        input_masks: Optional[torch.LongTensor] = None,
    ):
        r"""
        Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.

        Args:
            input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
                Optional input points for the prompt encoder. The padding of the point is automatically done by the
                processor. `point_batch_size` refers to the number of masks that we want the model to predict per
                point. The model will output `point_batch_size` times 3 masks in total.
            input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
                Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
                processor, or can be fed by the user.
            input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`):
                Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
                processor. users can also pass manually the input boxes.
            input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`):
                Optional input masks for the prompt encoder.
        """
        prompt_output = self.prompt_encoder(
            input_points=input_points,
            input_labels=input_labels,
            input_boxes=input_boxes,
            input_masks=input_masks,
        )
        return prompt_output

    @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        input_points: Optional[torch.FloatTensor] = None,
        input_labels: Optional[torch.LongTensor] = None,
        input_boxes: Optional[torch.FloatTensor] = None,
        input_masks: Optional[torch.LongTensor] = None,
        image_embeddings: Optional[torch.FloatTensor] = None,
        multimask_output: bool = False,
        hq_token_only: bool = True,
        attention_similarity: Optional[torch.FloatTensor] = None,
        target_embedding: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> List[Dict[str, torch.Tensor]]:
        r"""
        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoModel, AutoProcessor

        >>> model = AutoModel.from_pretrained("facebook/sam-vit-base")
        >>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")

        >>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png"
        >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
        >>> input_points = [[[400, 650]]]  # 2D location of a window on the car
        >>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt")

        >>> # Get segmentation mask
        >>> outputs = model(**inputs)

        >>> # Postprocess masks
        >>> masks = processor.post_process_masks(
        ...     outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
        ... )
        ```
        """
        output_attentions = (
            output_attentions if output_attentions is not None else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None and image_embeddings is None:
            raise ValueError("Either pixel_values or image_embeddings must be provided.")

        if pixel_values is not None and image_embeddings is not None:
            raise ValueError("Only one of pixel_values and image_embeddings can be provided.")

        if input_points is not None and len(input_points.shape) != 4:
            raise ValueError(
                "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
                " got {}.".format(input_points.shape),
            )
        if input_boxes is not None and len(input_boxes.shape) != 3:
            raise ValueError(
                "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
                " got {}.".format(input_boxes.shape),
            )
        if input_points is not None and input_boxes is not None:
            point_batch_size = input_points.shape[1]
            box_batch_size = input_boxes.shape[1]
            if point_batch_size != box_batch_size:
                raise ValueError(
                    "You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
                        point_batch_size, box_batch_size
                    )
                )

        image_positional_embeddings = self.get_image_wide_positional_embeddings()
        # repeat with batch size
        batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0]
        image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1)

        vision_attentions = None
        vision_hidden_states = None

        if pixel_values is not None:
            vision_outputs = self.vision_encoder(
                pixel_values,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            image_embeddings = vision_outputs[0]

            if output_hidden_states:
                vision_hidden_states = vision_outputs[1]
            if output_attentions:
                vision_attentions = vision_outputs[-1]

        if input_points is not None and input_labels is None:
            input_labels = torch.ones_like(
                input_points[:, :, :, 0], dtype=torch.int, device=input_points.device
            )

        if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
            raise ValueError(
                "The batch size of the image embeddings and the input points must be the same. ",
                "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
                " if you want to pass multiple points for the same image, make sure that you passed ",
                " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
                " input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
            )

        sparse_embeddings, dense_embeddings = self.prompt_encoder(
            input_points=input_points,
            input_labels=input_labels,
            input_boxes=input_boxes,
            input_masks=input_masks,
        )

        low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
            image_embeddings=image_embeddings,
            image_positional_embeddings=image_positional_embeddings,
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            intermediate_vision_embeddings=vision_hidden_states[1:],
            hq_token_only=hq_token_only,
            attention_similarity=attention_similarity,
            target_embedding=target_embedding,
            output_attentions=output_attentions,
        )

        if not return_dict:
            output = (iou_predictions, low_res_masks)
            if output_hidden_states:
                output = output + (vision_hidden_states,)

            if output_attentions:
                output = output + (vision_attentions, mask_decoder_attentions)
            return output

        return SamImageSegmentationOutput(
            iou_scores=iou_predictions,
            pred_masks=low_res_masks,
            vision_hidden_states=vision_hidden_states,
            vision_attentions=vision_attentions,
            mask_decoder_attentions=mask_decoder_attentions,
        )