Update handler.py
Browse files- handler.py +24 -8
handler.py
CHANGED
@@ -2,11 +2,18 @@ from typing import Dict, List, Any
|
|
2 |
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
3 |
import torch
|
4 |
|
|
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
# load model and processor from path
|
8 |
self.processor = AutoProcessor.from_pretrained(path)
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
12 |
"""
|
@@ -17,22 +24,31 @@ class EndpointHandler:
|
|
17 |
# process input
|
18 |
inputs = data.pop("inputs", data)
|
19 |
parameters = data.pop("parameters", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# preprocess
|
22 |
inputs = self.processor(
|
23 |
text=[inputs],
|
24 |
padding=True,
|
25 |
-
return_tensors="pt",).to(
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# pass inputs with all kwargs in data
|
28 |
if parameters is not None:
|
29 |
-
|
30 |
-
outputs = self.model.generate(**inputs, **parameters, do_sample=True, guidance_scale=3)
|
31 |
else:
|
32 |
-
|
33 |
-
outputs = self.model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=450)
|
34 |
|
35 |
# postprocess the prediction
|
36 |
-
prediction = outputs[0].cpu().numpy()
|
37 |
|
38 |
-
return [{"
|
|
|
2 |
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
3 |
import torch
|
4 |
|
5 |
+
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, path=""):
|
8 |
# load model and processor from path
|
9 |
self.processor = AutoProcessor.from_pretrained(path)
|
10 |
+
|
11 |
+
# Check if CUDA is available, and set the device accordingly
|
12 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Load the model to the device
|
15 |
+
self.model = MusicgenForConditionalGeneration.from_pretrained(path)
|
16 |
+
self.model.to(self.device) # Correcting this line
|
17 |
|
18 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
19 |
"""
|
|
|
24 |
# process input
|
25 |
inputs = data.pop("inputs", data)
|
26 |
parameters = data.pop("parameters", None)
|
27 |
+
duration = parameters.pop("duration", None)
|
28 |
+
|
29 |
+
if duration is not None:
|
30 |
+
# Calculate max new tokens based on duration, this is a placeholder, replace with actual logic
|
31 |
+
max_new_tokens = int(duration * 50)
|
32 |
+
else:
|
33 |
+
max_new_tokens = 256 # Default value if duration is not provided
|
34 |
|
35 |
# preprocess
|
36 |
inputs = self.processor(
|
37 |
text=[inputs],
|
38 |
padding=True,
|
39 |
+
return_tensors="pt",).to(self.device)
|
40 |
+
|
41 |
+
# If 'duration' is inside 'parameters', remove it
|
42 |
+
if parameters is not None and 'duration' in parameters:
|
43 |
+
parameters.pop('duration')
|
44 |
|
45 |
# pass inputs with all kwargs in data
|
46 |
if parameters is not None:
|
47 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, **parameters)
|
|
|
48 |
else:
|
49 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
|
|
50 |
|
51 |
# postprocess the prediction
|
52 |
+
prediction = outputs[0].cpu().numpy()
|
53 |
|
54 |
+
return [{"generated_text": prediction}]
|