Update README.md
Browse files
README.md
CHANGED
@@ -2,23 +2,43 @@
|
|
2 |
license: mit
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
-
-
|
|
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
- f1
|
9 |
- precision
|
10 |
- recall
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model-index:
|
12 |
- name: roberta-base_topic_classification_nyt_news
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
-
|
19 |
# roberta-base_topic_classification_nyt_news
|
20 |
|
21 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.3797
|
24 |
- Accuracy: 0.9094
|
@@ -34,9 +54,19 @@ More information needed
|
|
34 |
|
35 |
More information needed
|
36 |
|
37 |
-
## Training
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Training procedure
|
42 |
|
@@ -62,6 +92,39 @@ The following hyperparameters were used during training:
|
|
62 |
| 0.1239 | 4.0 | 81920 | 0.3981 | 0.9117 | 0.9113 | 0.9114 | 0.9117 |
|
63 |
| 0.1472 | 5.0 | 102400 | 0.4033 | 0.9137 | 0.9135 | 0.9134 | 0.9137 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
### Framework versions
|
67 |
|
|
|
2 |
license: mit
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
+
- topic
|
6 |
+
- classification
|
7 |
+
- news
|
8 |
+
- roberta
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
- f1
|
12 |
- precision
|
13 |
- recall
|
14 |
+
datasets:
|
15 |
+
- dstefa/New_York_Times_Topics
|
16 |
+
widget:
|
17 |
+
- text: >-
|
18 |
+
Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his innocence and vowing.
|
19 |
+
example_title: Analyst Update'
|
20 |
model-index:
|
21 |
- name: roberta-base_topic_classification_nyt_news
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
name: Text Classification
|
25 |
+
type: text-classification
|
26 |
+
dataset:
|
27 |
+
name: New_York_Times_Topics
|
28 |
+
type: News
|
29 |
+
metrics:
|
30 |
+
- type: F1
|
31 |
+
name: F1
|
32 |
+
value: 0.910647
|
33 |
+
- type: accuracy
|
34 |
+
name: accuracy
|
35 |
+
value: 0.910615
|
36 |
+
pipeline_tag: text-classification
|
37 |
---
|
38 |
|
|
|
|
|
|
|
39 |
# roberta-base_topic_classification_nyt_news
|
40 |
|
41 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the NYT News dataset (https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present).
|
42 |
It achieves the following results on the evaluation set:
|
43 |
- Loss: 0.3797
|
44 |
- Accuracy: 0.9094
|
|
|
54 |
|
55 |
More information needed
|
56 |
|
57 |
+
## Training data
|
58 |
+
Training data was classified as follow:
|
59 |
|
60 |
+
class |Description
|
61 |
+
-|-
|
62 |
+
0 |Sports
|
63 |
+
1 |Arts, Culture, and Entertainment
|
64 |
+
2 |Business and Finance
|
65 |
+
3 |Health and Wellness
|
66 |
+
4 |Lifestyle and Fashion
|
67 |
+
5 |Science and Technology
|
68 |
+
6 |Politics
|
69 |
+
7 |Crime
|
70 |
|
71 |
## Training procedure
|
72 |
|
|
|
92 |
| 0.1239 | 4.0 | 81920 | 0.3981 | 0.9117 | 0.9113 | 0.9114 | 0.9117 |
|
93 |
| 0.1472 | 5.0 | 102400 | 0.4033 | 0.9137 | 0.9135 | 0.9134 | 0.9137 |
|
94 |
|
95 |
+
### Model performances
|
96 |
+
|
97 |
+
-|precision|recall|f1|support
|
98 |
+
-|-|-|-|-
|
99 |
+
Sports|0.97|0.98|0.97|6400
|
100 |
+
Arts, Culture, and Entertainment|0.94|0.95|0.94|6400
|
101 |
+
Business and Finance|0.85|0.84|0.84|6400
|
102 |
+
Health and Wellness|0.90|0.93|0.91|6400
|
103 |
+
Lifestyle and Fashion|0.95|0.95|0.95|6400
|
104 |
+
Science and Technology|0.89|0.83|0.86|6400
|
105 |
+
Politics|0.93|0.88|0.90|6400
|
106 |
+
Crime|0.85|0.93|0.89|6400
|
107 |
+
| | | |
|
108 |
+
accuracy|||0.91|51200
|
109 |
+
macro avg|0.91|0.91|0.91|51200
|
110 |
+
weighted avg|0.91|0.91|0.91|51200
|
111 |
+
|
112 |
+
### How to use roberta-base_topic_classification_nyt_news with HuggingFace
|
113 |
+
|
114 |
+
```python
|
115 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
116 |
+
from transformers import pipeline
|
117 |
+
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
|
119 |
+
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
|
120 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
121 |
+
|
122 |
+
text = "Kederis proclaims innocence Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his innocence and vowing."
|
123 |
+
pipe(text)
|
124 |
+
|
125 |
+
[{'label': 'Sports', 'score': 0.9989326596260071}]
|
126 |
+
|
127 |
+
```
|
128 |
|
129 |
### Framework versions
|
130 |
|