dragonSwing
commited on
Commit
·
4ec0637
1
Parent(s):
6818035
Update README and model file
Browse files- 4gram.zip +2 -2
- README.md +38 -21
- example.mp3 +0 -0
- example.wav +0 -0
- example2.mp3 +0 -0
- hyperparams.yaml +1 -1
- model.ckpt +1 -1
4gram.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6e5c67796f2399c116073286a0870f141b4ddf1b6a75723c139c77d21114d55
|
3 |
+
size 2481196955
|
README.md
CHANGED
@@ -13,12 +13,10 @@ tags:
|
|
13 |
- Transformer
|
14 |
license: cc-by-nc-4.0
|
15 |
widget:
|
16 |
-
- example_title:
|
17 |
-
src: https://huggingface.co/
|
18 |
-
- example_title:
|
19 |
-
src: https://huggingface.co/
|
20 |
-
- example_title: VLSP ASR 2020 test T2
|
21 |
-
src: https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h/raw/main/audio-test/t2_0000006682.wav
|
22 |
model-index:
|
23 |
- name: Wav2vec2 Base Vietnamese 270h
|
24 |
results:
|
@@ -33,6 +31,28 @@ model-index:
|
|
33 |
- name: Test WER
|
34 |
type: wer
|
35 |
value: 9.66
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
- task:
|
37 |
name: Speech Recognition
|
38 |
type: automatic-speech-recognition
|
@@ -43,7 +63,7 @@ model-index:
|
|
43 |
metrics:
|
44 |
- name: Test WER
|
45 |
type: wer
|
46 |
-
value:
|
47 |
---
|
48 |
# Wav2Vec2-Base-Vietnamese-270h
|
49 |
Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labelled data combined from multiple datasets including [Common Voice](https://huggingface.co/datasets/common_voice), [VIVOS](https://huggingface.co/datasets/vivos), [VLSP2020](https://vlsp.org.vn/vlsp2020/eval/asr). The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io/).
|
@@ -51,19 +71,15 @@ When using this model, make sure that your speech input is sampled at 16kHz.
|
|
51 |
Please refer to [huggingface blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) or [speechbrain](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) on how to fine-tune Wav2Vec2 model on a specific language.
|
52 |
|
53 |
### Benchmark WER result:
|
54 |
-
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE
|
55 |
-
|
56 |
-
|without LM| 8.
|
57 |
-
|with 4-grams LM|
|
58 |
|
59 |
The language model was trained using [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset on about 32GB of crawled text.
|
60 |
|
61 |
### Install SpeechBrain
|
62 |
-
To use this model, you should install speechbrain
|
63 |
-
|
64 |
-
```bash
|
65 |
-
pip install git+https://github.com/speechbrain/speechbrain.git@develop
|
66 |
-
```
|
67 |
|
68 |
### Usage
|
69 |
The model can be used directly (without a language model) as follows:
|
@@ -71,14 +87,15 @@ The model can be used directly (without a language model) as follows:
|
|
71 |
from speechbrain.pretrained import EncoderASR
|
72 |
|
73 |
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi")
|
74 |
-
model.transcribe_file('dragonSwing/wav2vec2-base-vn-270h/example.
|
|
|
75 |
```
|
76 |
|
77 |
### Inference on GPU
|
78 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
79 |
|
80 |
### Evaluation
|
81 |
-
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
|
82 |
```python
|
83 |
import torch
|
84 |
import torchaudio
|
@@ -86,7 +103,7 @@ from datasets import load_dataset, load_metric, Audio
|
|
86 |
from transformers import Wav2Vec2FeatureExtractor
|
87 |
from speechbrain.pretrained import EncoderASR
|
88 |
import re
|
89 |
-
test_dataset = load_dataset("
|
90 |
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
91 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
wer = load_metric("wer")
|
@@ -116,10 +133,10 @@ def evaluate(batch):
|
|
116 |
batch["pred_strings"] = pred_str
|
117 |
|
118 |
return batch
|
119 |
-
result = test_dataset.map(evaluate, batched=True, batch_size=
|
120 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))
|
121 |
```
|
122 |
-
**Test Result**:
|
123 |
|
124 |
#### Citation
|
125 |
```
|
|
|
13 |
- Transformer
|
14 |
license: cc-by-nc-4.0
|
15 |
widget:
|
16 |
+
- example_title: Example 1
|
17 |
+
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example.mp3
|
18 |
+
- example_title: Example 2
|
19 |
+
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example2.mp3
|
|
|
|
|
20 |
model-index:
|
21 |
- name: Wav2vec2 Base Vietnamese 270h
|
22 |
results:
|
|
|
31 |
- name: Test WER
|
32 |
type: wer
|
33 |
value: 9.66
|
34 |
+
- task:
|
35 |
+
name: Speech Recognition
|
36 |
+
type: automatic-speech-recognition
|
37 |
+
dataset:
|
38 |
+
name: Common Voice 7.0
|
39 |
+
type: mozilla-foundation/common_voice_7_0
|
40 |
+
args: vi
|
41 |
+
metrics:
|
42 |
+
- name: Test WER
|
43 |
+
type: wer
|
44 |
+
value: 5.57
|
45 |
+
- task:
|
46 |
+
name: Speech Recognition
|
47 |
+
type: automatic-speech-recognition
|
48 |
+
dataset:
|
49 |
+
name: Common Voice 8.0
|
50 |
+
type: mozilla-foundation/common_voice_8_0
|
51 |
+
args: vi
|
52 |
+
metrics:
|
53 |
+
- name: Test WER
|
54 |
+
type: wer
|
55 |
+
value: 5.76
|
56 |
- task:
|
57 |
name: Speech Recognition
|
58 |
type: automatic-speech-recognition
|
|
|
63 |
metrics:
|
64 |
- name: Test WER
|
65 |
type: wer
|
66 |
+
value: 3.70
|
67 |
---
|
68 |
# Wav2Vec2-Base-Vietnamese-270h
|
69 |
Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labelled data combined from multiple datasets including [Common Voice](https://huggingface.co/datasets/common_voice), [VIVOS](https://huggingface.co/datasets/vivos), [VLSP2020](https://vlsp.org.vn/vlsp2020/eval/asr). The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io/).
|
|
|
71 |
Please refer to [huggingface blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) or [speechbrain](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) on how to fine-tune Wav2Vec2 model on a specific language.
|
72 |
|
73 |
### Benchmark WER result:
|
74 |
+
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|
75 |
+
|---|---|---|---|
|
76 |
+
|without LM| 8.23 | 12.15 | 12.15 |
|
77 |
+
|with 4-grams LM| 3.70 | 5.57 | 5.76 |
|
78 |
|
79 |
The language model was trained using [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset on about 32GB of crawled text.
|
80 |
|
81 |
### Install SpeechBrain
|
82 |
+
To use this model, you should install speechbrain > 0.5.10
|
|
|
|
|
|
|
|
|
83 |
|
84 |
### Usage
|
85 |
The model can be used directly (without a language model) as follows:
|
|
|
87 |
from speechbrain.pretrained import EncoderASR
|
88 |
|
89 |
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi")
|
90 |
+
model.transcribe_file('dragonSwing/wav2vec2-base-vn-270h/example.mp3')
|
91 |
+
# Output: được hồ chí minh coi là một động lực lớn của sự phát triển đất nước
|
92 |
```
|
93 |
|
94 |
### Inference on GPU
|
95 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
96 |
|
97 |
### Evaluation
|
98 |
+
The model can be evaluated as follows on the Vietnamese test data of Common Voice 8.0.
|
99 |
```python
|
100 |
import torch
|
101 |
import torchaudio
|
|
|
103 |
from transformers import Wav2Vec2FeatureExtractor
|
104 |
from speechbrain.pretrained import EncoderASR
|
105 |
import re
|
106 |
+
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token=True)
|
107 |
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
108 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
109 |
wer = load_metric("wer")
|
|
|
133 |
batch["pred_strings"] = pred_str
|
134 |
|
135 |
return batch
|
136 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=1)
|
137 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))
|
138 |
```
|
139 |
+
**Test Result**: 12.155553%
|
140 |
|
141 |
#### Citation
|
142 |
```
|
example.mp3
ADDED
Binary file (11.8 kB). View file
|
|
example.wav
DELETED
Binary file (49.6 kB)
|
|
example2.mp3
ADDED
Binary file (10.5 kB). View file
|
|
hyperparams.yaml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# ################################
|
2 |
-
# Model: wav2vec2 +
|
3 |
# Augmentation: SpecAugment
|
4 |
# Authors: Le Do Thanh Binh 2021
|
5 |
# ################################
|
|
|
1 |
# ################################
|
2 |
+
# Model: wav2vec2 + CTC
|
3 |
# Augmentation: SpecAugment
|
4 |
# Authors: Le Do Thanh Binh 2021
|
5 |
# ################################
|
model.ckpt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 379749523
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f28211bbcf163899adc748d90c1b40b481a6c785b1e71785f90e7e2a95c8e78
|
3 |
size 379749523
|