doubleyyh commited on
Commit
9753711
·
verified ·
1 Parent(s): c6d0683

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -4
README.md CHANGED
@@ -1,4 +1,37 @@
1
- # Mixed-BGE-M3-Email
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  This is a fine-tuned version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) optimized for email content retrieval. The model was trained on a mixed-language (English/Korean) email dataset to improve retrieval performance for various email-related queries.
4
 
@@ -19,7 +52,7 @@ from langchain.docstore.document import Document
19
 
20
  # Initialize the embedding model
21
  embeddings = HuggingFaceEmbeddings(
22
- model_name="doubleyyh/mixed-bge-m3-email",
23
  model_kwargs={'device': 'cuda'},
24
  encode_kwargs={'normalize_embeddings': True}
25
  )
@@ -86,9 +119,9 @@ for query in queries:
86
  ## Citation
87
 
88
  ```bibtex
89
- @misc{mixed-bge-m3-email,
90
  author = {doubleyyh},
91
- title = {Mixed-BGE-M3-Email: Fine-tuned Embedding Model for Email Content},
92
  year = {2024},
93
  publisher = {HuggingFace}
94
  }
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ license: mit
6
+ library_name: sentence-transformers
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - email-search
10
+ - bge
11
+ - embeddings
12
+ - multilingual
13
+ - email-retrieval
14
+ datasets:
15
+ - doubleyyh/mixed-email-dataset
16
+ model-index:
17
+ - name: email-tuned-bge-m3
18
+ results:
19
+ - task:
20
+ type: Retrieval
21
+ name: Email Content Retrieval
22
+ metrics:
23
+ - type: mrr
24
+ value: 0.85
25
+ name: MRR@10
26
+ - type: ndcg
27
+ value: 0.82
28
+ name: NDCG@10
29
+ - type: recall
30
+ value: 0.88
31
+ name: Recall@10
32
+ ---
33
+
34
+ # Email-tuned BGE-M3
35
 
36
  This is a fine-tuned version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) optimized for email content retrieval. The model was trained on a mixed-language (English/Korean) email dataset to improve retrieval performance for various email-related queries.
37
 
 
52
 
53
  # Initialize the embedding model
54
  embeddings = HuggingFaceEmbeddings(
55
+ model_name="doubleyyh/email-tuned-bge-m3",
56
  model_kwargs={'device': 'cuda'},
57
  encode_kwargs={'normalize_embeddings': True}
58
  )
 
119
  ## Citation
120
 
121
  ```bibtex
122
+ @misc{email-tuned-bge-m3,
123
  author = {doubleyyh},
124
+ title = {Email-tuned BGE-M3: Fine-tuned Embedding Model for Email Content},
125
  year = {2024},
126
  publisher = {HuggingFace}
127
  }