Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,37 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
This is a fine-tuned version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) optimized for email content retrieval. The model was trained on a mixed-language (English/Korean) email dataset to improve retrieval performance for various email-related queries.
|
4 |
|
@@ -19,7 +52,7 @@ from langchain.docstore.document import Document
|
|
19 |
|
20 |
# Initialize the embedding model
|
21 |
embeddings = HuggingFaceEmbeddings(
|
22 |
-
model_name="doubleyyh/
|
23 |
model_kwargs={'device': 'cuda'},
|
24 |
encode_kwargs={'normalize_embeddings': True}
|
25 |
)
|
@@ -86,9 +119,9 @@ for query in queries:
|
|
86 |
## Citation
|
87 |
|
88 |
```bibtex
|
89 |
-
@misc{
|
90 |
author = {doubleyyh},
|
91 |
-
title = {
|
92 |
year = {2024},
|
93 |
publisher = {HuggingFace}
|
94 |
}
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ko
|
5 |
+
license: mit
|
6 |
+
library_name: sentence-transformers
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
+
tags:
|
9 |
+
- email-search
|
10 |
+
- bge
|
11 |
+
- embeddings
|
12 |
+
- multilingual
|
13 |
+
- email-retrieval
|
14 |
+
datasets:
|
15 |
+
- doubleyyh/mixed-email-dataset
|
16 |
+
model-index:
|
17 |
+
- name: email-tuned-bge-m3
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: Retrieval
|
21 |
+
name: Email Content Retrieval
|
22 |
+
metrics:
|
23 |
+
- type: mrr
|
24 |
+
value: 0.85
|
25 |
+
name: MRR@10
|
26 |
+
- type: ndcg
|
27 |
+
value: 0.82
|
28 |
+
name: NDCG@10
|
29 |
+
- type: recall
|
30 |
+
value: 0.88
|
31 |
+
name: Recall@10
|
32 |
+
---
|
33 |
+
|
34 |
+
# Email-tuned BGE-M3
|
35 |
|
36 |
This is a fine-tuned version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) optimized for email content retrieval. The model was trained on a mixed-language (English/Korean) email dataset to improve retrieval performance for various email-related queries.
|
37 |
|
|
|
52 |
|
53 |
# Initialize the embedding model
|
54 |
embeddings = HuggingFaceEmbeddings(
|
55 |
+
model_name="doubleyyh/email-tuned-bge-m3",
|
56 |
model_kwargs={'device': 'cuda'},
|
57 |
encode_kwargs={'normalize_embeddings': True}
|
58 |
)
|
|
|
119 |
## Citation
|
120 |
|
121 |
```bibtex
|
122 |
+
@misc{email-tuned-bge-m3,
|
123 |
author = {doubleyyh},
|
124 |
+
title = {Email-tuned BGE-M3: Fine-tuned Embedding Model for Email Content},
|
125 |
year = {2024},
|
126 |
publisher = {HuggingFace}
|
127 |
}
|