Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,117 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
library_name: peft
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
[
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
##
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.14.0
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ko
|
5 |
+
tags:
|
6 |
+
- qwen
|
7 |
+
- lora
|
8 |
+
- rag
|
9 |
+
- instruction-tuning
|
10 |
+
- email
|
11 |
+
- qwen-2.5
|
12 |
+
- peft
|
13 |
+
- question-answering
|
14 |
library_name: peft
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
license: mit
|
17 |
---
|
18 |
|
19 |
+
# Qwen-RAG-LoRA
|
20 |
|
21 |
+
This repository contains LoRA weights for [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct), fine-tuned for email-based question answering tasks. The model has been trained to handle both English and Korean queries about email content.
|
22 |
|
23 |
+
## Model Description
|
24 |
|
25 |
+
- **Base Model:** Qwen/Qwen2.5-7B-Instruct
|
26 |
+
- **Training Type:** LoRA (Low-Rank Adaptation)
|
27 |
+
- **Checkpoint:** checkpoint-600
|
28 |
+
- **Languages:** English and Korean
|
29 |
+
- **Task:** Email-based Question Answering
|
30 |
+
- **Domain:** Email Content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Training Details
|
33 |
|
34 |
+
### LoRA Configuration
|
35 |
+
```python
|
36 |
+
lora_config = LoraConfig(
|
37 |
+
r=8,
|
38 |
+
lora_alpha=32,
|
39 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
40 |
+
lora_dropout=0.1,
|
41 |
+
bias="none",
|
42 |
+
task_type="CAUSAL_LM"
|
43 |
+
)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Usage with vLLM
|
47 |
+
|
48 |
+
```python
|
49 |
+
from vllm import LLM, SamplingParams
|
50 |
+
from vllm.lora.request import LoRARequest
|
51 |
+
|
52 |
+
# Initialize LLM with LoRA support
|
53 |
+
llm = LLM(
|
54 |
+
model="Qwen/Qwen2.5-7B-Instruct",
|
55 |
+
tensor_parallel_size=2,
|
56 |
+
enable_lora=True
|
57 |
+
)
|
58 |
+
|
59 |
+
sampling_params = SamplingParams(temperature=0.0, max_tokens=50)
|
60 |
+
|
61 |
+
# Create LoRA request
|
62 |
+
lora_request = LoRARequest(
|
63 |
+
"rag_adapter",
|
64 |
+
1,
|
65 |
+
"doubleyyh/qwen-rag-lora" # HuggingFace repo name
|
66 |
+
)
|
67 |
+
|
68 |
+
# Example prompt
|
69 |
+
prompt = """Using the context provided below, answer the question concisely. Respond in Korean if the question is in Korean, and in English if the question is in English.
|
70 |
+
|
71 |
+
Context: subject: Meeting Schedule Update
|
72 |
+
from: [['John Smith', '[email protected]']]
|
73 |
+
to: [['Team', 'team@company.com']]
|
74 |
+
text_body: The project review meeting is rescheduled to 3 PM tomorrow.
|
75 |
+
|
76 |
+
Question: When is the meeting rescheduled to?
|
77 |
+
|
78 |
+
Answer: """
|
79 |
+
|
80 |
+
# Generate with LoRA
|
81 |
+
outputs = llm.generate([prompt], sampling_params, lora_request=lora_request)
|
82 |
+
print(outputs[0].outputs[0].text)
|
83 |
+
```
|
84 |
+
|
85 |
+
## Example Input/Output
|
86 |
+
|
87 |
+
```
|
88 |
+
# English Query
|
89 |
+
Q: When is the project review scheduled?
|
90 |
+
A: The project review meeting is rescheduled to 3 PM tomorrow.
|
91 |
+
|
92 |
+
# Korean Query
|
93 |
+
Q: ํ๋ก์ ํธ ๋ฏธํ
์ด ์ธ์ ๋ก ๋ณ๊ฒฝ๋์๋์?
|
94 |
+
A: ๋ด์ผ ์คํ 3์๋ก ๋ณ๊ฒฝ๋์์ต๋๋ค.
|
95 |
+
```
|
96 |
+
|
97 |
+
## Limitations
|
98 |
+
|
99 |
+
- The model is specifically trained for email-related queries
|
100 |
+
- Performance might vary between English and Korean
|
101 |
+
- Optimal results when used with email content in standard format
|
102 |
+
- Limited to the capabilities of the base Qwen model
|
103 |
+
|
104 |
+
## Citation
|
105 |
+
|
106 |
+
```bibtex
|
107 |
+
@misc{qwen-rag-lora,
|
108 |
+
author = {doubleyyh},
|
109 |
+
title = {Qwen-RAG-LoRA: Fine-tuned LoRA Weights for Email QA},
|
110 |
+
year = {2024},
|
111 |
+
publisher = {Hugging Face}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
## License
|
116 |
+
|
117 |
+
This model follows the same license as Qwen2.5-7B-Instruct.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|