doubleyyh commited on
Commit
5b48d17
ยท
verified ยท
1 Parent(s): d199afb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -192
README.md CHANGED
@@ -1,202 +1,117 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-7B-Instruct
 
 
 
 
 
 
 
 
 
 
 
3
  library_name: peft
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.14.0
 
1
  ---
2
+ language:
3
+ - en
4
+ - ko
5
+ tags:
6
+ - qwen
7
+ - lora
8
+ - rag
9
+ - instruction-tuning
10
+ - email
11
+ - qwen-2.5
12
+ - peft
13
+ - question-answering
14
  library_name: peft
15
+ pipeline_tag: text-generation
16
+ license: mit
17
  ---
18
 
19
+ # Qwen-RAG-LoRA
20
 
21
+ This repository contains LoRA weights for [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct), fine-tuned for email-based question answering tasks. The model has been trained to handle both English and Korean queries about email content.
22
 
23
+ ## Model Description
24
 
25
+ - **Base Model:** Qwen/Qwen2.5-7B-Instruct
26
+ - **Training Type:** LoRA (Low-Rank Adaptation)
27
+ - **Checkpoint:** checkpoint-600
28
+ - **Languages:** English and Korean
29
+ - **Task:** Email-based Question Answering
30
+ - **Domain:** Email Content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Training Details
33
 
34
+ ### LoRA Configuration
35
+ ```python
36
+ lora_config = LoraConfig(
37
+ r=8,
38
+ lora_alpha=32,
39
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
40
+ lora_dropout=0.1,
41
+ bias="none",
42
+ task_type="CAUSAL_LM"
43
+ )
44
+ ```
45
+
46
+ ## Usage with vLLM
47
+
48
+ ```python
49
+ from vllm import LLM, SamplingParams
50
+ from vllm.lora.request import LoRARequest
51
+
52
+ # Initialize LLM with LoRA support
53
+ llm = LLM(
54
+ model="Qwen/Qwen2.5-7B-Instruct",
55
+ tensor_parallel_size=2,
56
+ enable_lora=True
57
+ )
58
+
59
+ sampling_params = SamplingParams(temperature=0.0, max_tokens=50)
60
+
61
+ # Create LoRA request
62
+ lora_request = LoRARequest(
63
+ "rag_adapter",
64
+ 1,
65
+ "doubleyyh/qwen-rag-lora" # HuggingFace repo name
66
+ )
67
+
68
+ # Example prompt
69
+ prompt = """Using the context provided below, answer the question concisely. Respond in Korean if the question is in Korean, and in English if the question is in English.
70
+
71
+ Context: subject: Meeting Schedule Update
72
+ from: [['John Smith', '[email protected]']]
73
+ to: [['Team', 'team@company.com']]
74
+ text_body: The project review meeting is rescheduled to 3 PM tomorrow.
75
+
76
+ Question: When is the meeting rescheduled to?
77
+
78
+ Answer: """
79
+
80
+ # Generate with LoRA
81
+ outputs = llm.generate([prompt], sampling_params, lora_request=lora_request)
82
+ print(outputs[0].outputs[0].text)
83
+ ```
84
+
85
+ ## Example Input/Output
86
+
87
+ ```
88
+ # English Query
89
+ Q: When is the project review scheduled?
90
+ A: The project review meeting is rescheduled to 3 PM tomorrow.
91
+
92
+ # Korean Query
93
+ Q: ํ”„๋กœ์ ํŠธ ๋ฏธํŒ…์ด ์–ธ์ œ๋กœ ๋ณ€๊ฒฝ๋˜์—ˆ๋‚˜์š”?
94
+ A: ๋‚ด์ผ ์˜คํ›„ 3์‹œ๋กœ ๋ณ€๊ฒฝ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
95
+ ```
96
+
97
+ ## Limitations
98
+
99
+ - The model is specifically trained for email-related queries
100
+ - Performance might vary between English and Korean
101
+ - Optimal results when used with email content in standard format
102
+ - Limited to the capabilities of the base Qwen model
103
+
104
+ ## Citation
105
+
106
+ ```bibtex
107
+ @misc{qwen-rag-lora,
108
+ author = {doubleyyh},
109
+ title = {Qwen-RAG-LoRA: Fine-tuned LoRA Weights for Email QA},
110
+ year = {2024},
111
+ publisher = {Hugging Face}
112
+ }
113
+ ```
114
+
115
+ ## License
116
+
117
+ This model follows the same license as Qwen2.5-7B-Instruct.