Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +144 -0
- checkpoint-853/1_Pooling/config.json +10 -0
- checkpoint-853/README.md +144 -0
- checkpoint-853/config.json +28 -0
- checkpoint-853/config_sentence_transformers.json +10 -0
- checkpoint-853/global_step853/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-853/global_step853/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-853/global_step853/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-853/global_step853/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-853/global_step853/mp_rank_00_model_states.pt +3 -0
- checkpoint-853/latest +1 -0
- checkpoint-853/model.safetensors +3 -0
- checkpoint-853/modules.json +20 -0
- checkpoint-853/rng_state_0.pth +3 -0
- checkpoint-853/rng_state_1.pth +3 -0
- checkpoint-853/rng_state_2.pth +3 -0
- checkpoint-853/rng_state_3.pth +3 -0
- checkpoint-853/sentence_bert_config.json +4 -0
- checkpoint-853/sentencepiece.bpe.model +3 -0
- checkpoint-853/special_tokens_map.json +51 -0
- checkpoint-853/tokenizer.json +3 -0
- checkpoint-853/tokenizer_config.json +55 -0
- checkpoint-853/trainer_state.json +3015 -0
- checkpoint-853/training_args.bin +3 -0
- checkpoint-853/zero_to_fp32.py +604 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Aug22_17-17-24_autodl-container-c024408f5d-9bcd732d/events.out.tfevents.1724318254.autodl-container-c024408f5d-9bcd732d.5345.0 +3 -0
- runs/Aug22_17-18-40_autodl-container-c024408f5d-9bcd732d/events.out.tfevents.1724318333.autodl-container-c024408f5d-9bcd732d.6318.0 +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-853/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets: []
|
3 |
+
language: []
|
4 |
+
library_name: sentence-transformers
|
5 |
+
pipeline_tag: sentence-similarity
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
widget: []
|
11 |
+
---
|
12 |
+
|
13 |
+
# SentenceTransformer
|
14 |
+
|
15 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** Sentence Transformer
|
21 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
22 |
+
- **Maximum Sequence Length:** 8192 tokens
|
23 |
+
- **Output Dimensionality:** 1024 tokens
|
24 |
+
- **Similarity Function:** Cosine Similarity
|
25 |
+
<!-- - **Training Dataset:** Unknown -->
|
26 |
+
<!-- - **Language:** Unknown -->
|
27 |
+
<!-- - **License:** Unknown -->
|
28 |
+
|
29 |
+
### Model Sources
|
30 |
+
|
31 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
32 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
34 |
+
|
35 |
+
### Full Model Architecture
|
36 |
+
|
37 |
+
```
|
38 |
+
SentenceTransformer(
|
39 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
40 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
+
(2): Normalize()
|
42 |
+
)
|
43 |
+
```
|
44 |
+
|
45 |
+
## Usage
|
46 |
+
|
47 |
+
### Direct Usage (Sentence Transformers)
|
48 |
+
|
49 |
+
First install the Sentence Transformers library:
|
50 |
+
|
51 |
+
```bash
|
52 |
+
pip install -U sentence-transformers
|
53 |
+
```
|
54 |
+
|
55 |
+
Then you can load this model and run inference.
|
56 |
+
```python
|
57 |
+
from sentence_transformers import SentenceTransformer
|
58 |
+
|
59 |
+
# Download from the 🤗 Hub
|
60 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
61 |
+
# Run inference
|
62 |
+
sentences = [
|
63 |
+
'The weather is lovely today.',
|
64 |
+
"It's so sunny outside!",
|
65 |
+
'He drove to the stadium.',
|
66 |
+
]
|
67 |
+
embeddings = model.encode(sentences)
|
68 |
+
print(embeddings.shape)
|
69 |
+
# [3, 1024]
|
70 |
+
|
71 |
+
# Get the similarity scores for the embeddings
|
72 |
+
similarities = model.similarity(embeddings, embeddings)
|
73 |
+
print(similarities.shape)
|
74 |
+
# [3, 3]
|
75 |
+
```
|
76 |
+
|
77 |
+
<!--
|
78 |
+
### Direct Usage (Transformers)
|
79 |
+
|
80 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
+
|
82 |
+
</details>
|
83 |
+
-->
|
84 |
+
|
85 |
+
<!--
|
86 |
+
### Downstream Usage (Sentence Transformers)
|
87 |
+
|
88 |
+
You can finetune this model on your own dataset.
|
89 |
+
|
90 |
+
<details><summary>Click to expand</summary>
|
91 |
+
|
92 |
+
</details>
|
93 |
+
-->
|
94 |
+
|
95 |
+
<!--
|
96 |
+
### Out-of-Scope Use
|
97 |
+
|
98 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
+
-->
|
100 |
+
|
101 |
+
<!--
|
102 |
+
## Bias, Risks and Limitations
|
103 |
+
|
104 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Recommendations
|
109 |
+
|
110 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
## Training Details
|
114 |
+
|
115 |
+
### Framework Versions
|
116 |
+
- Python: 3.12.3
|
117 |
+
- Sentence Transformers: 3.0.1
|
118 |
+
- Transformers: 4.42.1
|
119 |
+
- PyTorch: 2.3.0+cu121
|
120 |
+
- Accelerate: 0.31.0
|
121 |
+
- Datasets: 2.20.0
|
122 |
+
- Tokenizers: 0.19.1
|
123 |
+
|
124 |
+
## Citation
|
125 |
+
|
126 |
+
### BibTeX
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Glossary
|
130 |
+
|
131 |
+
*Clearly define terms in order to be accessible across audiences.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
## Model Card Authors
|
136 |
+
|
137 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
## Model Card Contact
|
142 |
+
|
143 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
144 |
+
-->
|
checkpoint-853/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-853/README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets: []
|
3 |
+
language: []
|
4 |
+
library_name: sentence-transformers
|
5 |
+
pipeline_tag: sentence-similarity
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
widget: []
|
11 |
+
---
|
12 |
+
|
13 |
+
# SentenceTransformer
|
14 |
+
|
15 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** Sentence Transformer
|
21 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
22 |
+
- **Maximum Sequence Length:** 8192 tokens
|
23 |
+
- **Output Dimensionality:** 1024 tokens
|
24 |
+
- **Similarity Function:** Cosine Similarity
|
25 |
+
<!-- - **Training Dataset:** Unknown -->
|
26 |
+
<!-- - **Language:** Unknown -->
|
27 |
+
<!-- - **License:** Unknown -->
|
28 |
+
|
29 |
+
### Model Sources
|
30 |
+
|
31 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
32 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
34 |
+
|
35 |
+
### Full Model Architecture
|
36 |
+
|
37 |
+
```
|
38 |
+
SentenceTransformer(
|
39 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
40 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
+
(2): Normalize()
|
42 |
+
)
|
43 |
+
```
|
44 |
+
|
45 |
+
## Usage
|
46 |
+
|
47 |
+
### Direct Usage (Sentence Transformers)
|
48 |
+
|
49 |
+
First install the Sentence Transformers library:
|
50 |
+
|
51 |
+
```bash
|
52 |
+
pip install -U sentence-transformers
|
53 |
+
```
|
54 |
+
|
55 |
+
Then you can load this model and run inference.
|
56 |
+
```python
|
57 |
+
from sentence_transformers import SentenceTransformer
|
58 |
+
|
59 |
+
# Download from the 🤗 Hub
|
60 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
61 |
+
# Run inference
|
62 |
+
sentences = [
|
63 |
+
'The weather is lovely today.',
|
64 |
+
"It's so sunny outside!",
|
65 |
+
'He drove to the stadium.',
|
66 |
+
]
|
67 |
+
embeddings = model.encode(sentences)
|
68 |
+
print(embeddings.shape)
|
69 |
+
# [3, 1024]
|
70 |
+
|
71 |
+
# Get the similarity scores for the embeddings
|
72 |
+
similarities = model.similarity(embeddings, embeddings)
|
73 |
+
print(similarities.shape)
|
74 |
+
# [3, 3]
|
75 |
+
```
|
76 |
+
|
77 |
+
<!--
|
78 |
+
### Direct Usage (Transformers)
|
79 |
+
|
80 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
+
|
82 |
+
</details>
|
83 |
+
-->
|
84 |
+
|
85 |
+
<!--
|
86 |
+
### Downstream Usage (Sentence Transformers)
|
87 |
+
|
88 |
+
You can finetune this model on your own dataset.
|
89 |
+
|
90 |
+
<details><summary>Click to expand</summary>
|
91 |
+
|
92 |
+
</details>
|
93 |
+
-->
|
94 |
+
|
95 |
+
<!--
|
96 |
+
### Out-of-Scope Use
|
97 |
+
|
98 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
+
-->
|
100 |
+
|
101 |
+
<!--
|
102 |
+
## Bias, Risks and Limitations
|
103 |
+
|
104 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Recommendations
|
109 |
+
|
110 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
## Training Details
|
114 |
+
|
115 |
+
### Framework Versions
|
116 |
+
- Python: 3.12.3
|
117 |
+
- Sentence Transformers: 3.0.1
|
118 |
+
- Transformers: 4.42.1
|
119 |
+
- PyTorch: 2.3.0+cu121
|
120 |
+
- Accelerate: 0.31.0
|
121 |
+
- Datasets: 2.20.0
|
122 |
+
- Tokenizers: 0.19.1
|
123 |
+
|
124 |
+
## Citation
|
125 |
+
|
126 |
+
### BibTeX
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Glossary
|
130 |
+
|
131 |
+
*Clearly define terms in order to be accessible across audiences.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
## Model Card Authors
|
136 |
+
|
137 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
## Model Card Contact
|
142 |
+
|
143 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
144 |
+
-->
|
checkpoint-853/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/autodl-tmp/bge-m3_r4/checkpoint-853",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.42.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-853/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.1",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-853/global_step853/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac25212b0dd7c1c33af9d13534f23a2f21eab85bf4c9e2e0f1128572d543b424
|
3 |
+
size 1703267856
|
checkpoint-853/global_step853/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bdff9ef70123a1f1f4dad2085d3a4b06230abdf3586968517c8dc6aa38cbf9f
|
3 |
+
size 1703270288
|
checkpoint-853/global_step853/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c03c434680e35f1b5c8e28cdcf1cd0576573eaca6204bf2443374bb66ee115
|
3 |
+
size 1703283152
|
checkpoint-853/global_step853/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eb0bf36954e8652094b0ae7bddbb405e2158e63dbeaad5c4b3db557401ede14
|
3 |
+
size 1703283472
|
checkpoint-853/global_step853/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85e1bc9c6dfde3f944cdedf1fa2ff240aaba02f760d9b2d19a313a37ad62e470
|
3 |
+
size 1135627884
|
checkpoint-853/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step853
|
checkpoint-853/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff2b3be09c7552fc58248f097a32771e376f56eb50737f93e0f41cef389d71d
|
3 |
+
size 2271064456
|
checkpoint-853/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoint-853/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea33f4d3831c1aa0fff107f94bdb1e3f44f9720a90a553c21c0e244b5b8e09f0
|
3 |
+
size 14960
|
checkpoint-853/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:605ff35753da8ab8637f8d7e383db916a3b20e716fe7662e9f25bf8f312a8a16
|
3 |
+
size 14960
|
checkpoint-853/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8113ead6f45e448461169ca78aec213478a5414d0f423bf84379df9f5363aea
|
3 |
+
size 14960
|
checkpoint-853/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86bee34831933d6a7c1c2561a8aedecde5c4cd60815ddd9e2a1b33907cc7843f
|
3 |
+
size 14960
|
checkpoint-853/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-853/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-853/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoint-853/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b74659c780d49afad7a7b9799868f75cbd3014fb6c34956e85a793028d38094a
|
3 |
+
size 17098251
|
checkpoint-853/tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
checkpoint-853/trainer_state.json
ADDED
@@ -0,0 +1,3015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9994141769185706,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 853,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0023432923257176333,
|
13 |
+
"grad_norm": 0.00011052378977183253,
|
14 |
+
"learning_rate": 5e-06,
|
15 |
+
"loss": 0.0,
|
16 |
+
"step": 2
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0046865846514352666,
|
20 |
+
"grad_norm": 0.00020697808940894902,
|
21 |
+
"learning_rate": 4.9941245593419514e-06,
|
22 |
+
"loss": 0.0,
|
23 |
+
"step": 4
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.007029876977152899,
|
27 |
+
"grad_norm": 0.0012532881228253245,
|
28 |
+
"learning_rate": 4.982373678025853e-06,
|
29 |
+
"loss": 0.0,
|
30 |
+
"step": 6
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.009373169302870533,
|
34 |
+
"grad_norm": 0.0008086035377345979,
|
35 |
+
"learning_rate": 4.970622796709754e-06,
|
36 |
+
"loss": 0.0,
|
37 |
+
"step": 8
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.011716461628588167,
|
41 |
+
"grad_norm": 0.0021155672147870064,
|
42 |
+
"learning_rate": 4.958871915393655e-06,
|
43 |
+
"loss": 0.0,
|
44 |
+
"step": 10
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.014059753954305799,
|
48 |
+
"grad_norm": 0.0012233309680595994,
|
49 |
+
"learning_rate": 4.947121034077556e-06,
|
50 |
+
"loss": 0.0,
|
51 |
+
"step": 12
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.016403046280023433,
|
55 |
+
"grad_norm": 0.0027737286873161793,
|
56 |
+
"learning_rate": 4.9353701527614576e-06,
|
57 |
+
"loss": 0.0,
|
58 |
+
"step": 14
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.018746338605741066,
|
62 |
+
"grad_norm": 0.0042906939052045345,
|
63 |
+
"learning_rate": 4.923619271445359e-06,
|
64 |
+
"loss": 0.0,
|
65 |
+
"step": 16
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0210896309314587,
|
69 |
+
"grad_norm": 0.0005172386299818754,
|
70 |
+
"learning_rate": 4.91186839012926e-06,
|
71 |
+
"loss": 0.0,
|
72 |
+
"step": 18
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.023432923257176334,
|
76 |
+
"grad_norm": 0.002410772955045104,
|
77 |
+
"learning_rate": 4.900117508813161e-06,
|
78 |
+
"loss": 0.0,
|
79 |
+
"step": 20
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.025776215582893967,
|
83 |
+
"grad_norm": 0.6443753242492676,
|
84 |
+
"learning_rate": 4.8883666274970625e-06,
|
85 |
+
"loss": 0.0027,
|
86 |
+
"step": 22
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.028119507908611598,
|
90 |
+
"grad_norm": 0.004394118674099445,
|
91 |
+
"learning_rate": 4.876615746180964e-06,
|
92 |
+
"loss": 0.0001,
|
93 |
+
"step": 24
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03046280023432923,
|
97 |
+
"grad_norm": 0.006466630846261978,
|
98 |
+
"learning_rate": 4.864864864864866e-06,
|
99 |
+
"loss": 0.0001,
|
100 |
+
"step": 26
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.032806092560046865,
|
104 |
+
"grad_norm": 0.011924203485250473,
|
105 |
+
"learning_rate": 4.853113983548767e-06,
|
106 |
+
"loss": 0.0001,
|
107 |
+
"step": 28
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.0351493848857645,
|
111 |
+
"grad_norm": 0.23746930062770844,
|
112 |
+
"learning_rate": 4.841363102232668e-06,
|
113 |
+
"loss": 0.0001,
|
114 |
+
"step": 30
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.03749267721148213,
|
118 |
+
"grad_norm": 0.0031001348979771137,
|
119 |
+
"learning_rate": 4.8296122209165694e-06,
|
120 |
+
"loss": 0.0,
|
121 |
+
"step": 32
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.03983596953719976,
|
125 |
+
"grad_norm": 0.0029028633143752813,
|
126 |
+
"learning_rate": 4.817861339600471e-06,
|
127 |
+
"loss": 0.0,
|
128 |
+
"step": 34
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.0421792618629174,
|
132 |
+
"grad_norm": 0.014626468531787395,
|
133 |
+
"learning_rate": 4.806110458284372e-06,
|
134 |
+
"loss": 0.0001,
|
135 |
+
"step": 36
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04452255418863503,
|
139 |
+
"grad_norm": 0.001155451056547463,
|
140 |
+
"learning_rate": 4.794359576968273e-06,
|
141 |
+
"loss": 0.0,
|
142 |
+
"step": 38
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.04686584651435267,
|
146 |
+
"grad_norm": 0.003476829966530204,
|
147 |
+
"learning_rate": 4.782608695652174e-06,
|
148 |
+
"loss": 0.0,
|
149 |
+
"step": 40
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0492091388400703,
|
153 |
+
"grad_norm": 0.0002227002551080659,
|
154 |
+
"learning_rate": 4.7708578143360756e-06,
|
155 |
+
"loss": 0.0,
|
156 |
+
"step": 42
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.051552431165787935,
|
160 |
+
"grad_norm": 0.0001427282695658505,
|
161 |
+
"learning_rate": 4.759106933019977e-06,
|
162 |
+
"loss": 0.0,
|
163 |
+
"step": 44
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.053895723491505565,
|
167 |
+
"grad_norm": 0.0027408564928919077,
|
168 |
+
"learning_rate": 4.747356051703878e-06,
|
169 |
+
"loss": 0.0002,
|
170 |
+
"step": 46
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.056239015817223195,
|
174 |
+
"grad_norm": 0.0020253027323633432,
|
175 |
+
"learning_rate": 4.735605170387779e-06,
|
176 |
+
"loss": 0.0,
|
177 |
+
"step": 48
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05858230814294083,
|
181 |
+
"grad_norm": 0.001760220737196505,
|
182 |
+
"learning_rate": 4.723854289071681e-06,
|
183 |
+
"loss": 0.0,
|
184 |
+
"step": 50
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.06092560046865846,
|
188 |
+
"grad_norm": 0.0010492791188880801,
|
189 |
+
"learning_rate": 4.7121034077555825e-06,
|
190 |
+
"loss": 0.0,
|
191 |
+
"step": 52
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0632688927943761,
|
195 |
+
"grad_norm": 0.002001305343583226,
|
196 |
+
"learning_rate": 4.700352526439484e-06,
|
197 |
+
"loss": 0.0,
|
198 |
+
"step": 54
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.06561218512009373,
|
202 |
+
"grad_norm": 0.18566887080669403,
|
203 |
+
"learning_rate": 4.688601645123384e-06,
|
204 |
+
"loss": 0.0009,
|
205 |
+
"step": 56
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.06795547744581136,
|
209 |
+
"grad_norm": 0.0009072807151824236,
|
210 |
+
"learning_rate": 4.676850763807285e-06,
|
211 |
+
"loss": 0.0,
|
212 |
+
"step": 58
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.070298769771529,
|
216 |
+
"grad_norm": 0.003983665257692337,
|
217 |
+
"learning_rate": 4.665099882491187e-06,
|
218 |
+
"loss": 0.0006,
|
219 |
+
"step": 60
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.07264206209724663,
|
223 |
+
"grad_norm": 0.01946200616657734,
|
224 |
+
"learning_rate": 4.653349001175089e-06,
|
225 |
+
"loss": 0.0001,
|
226 |
+
"step": 62
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.07498535442296426,
|
230 |
+
"grad_norm": 0.004048655740916729,
|
231 |
+
"learning_rate": 4.64159811985899e-06,
|
232 |
+
"loss": 0.0,
|
233 |
+
"step": 64
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.0773286467486819,
|
237 |
+
"grad_norm": 0.0005872617475688457,
|
238 |
+
"learning_rate": 4.629847238542891e-06,
|
239 |
+
"loss": 0.0001,
|
240 |
+
"step": 66
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.07967193907439953,
|
244 |
+
"grad_norm": 0.008831903338432312,
|
245 |
+
"learning_rate": 4.618096357226792e-06,
|
246 |
+
"loss": 0.0001,
|
247 |
+
"step": 68
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.08201523140011717,
|
251 |
+
"grad_norm": 0.006819219794124365,
|
252 |
+
"learning_rate": 4.6063454759106936e-06,
|
253 |
+
"loss": 0.0001,
|
254 |
+
"step": 70
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.0843585237258348,
|
258 |
+
"grad_norm": 0.0007863900391384959,
|
259 |
+
"learning_rate": 4.594594594594596e-06,
|
260 |
+
"loss": 0.0,
|
261 |
+
"step": 72
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.08670181605155243,
|
265 |
+
"grad_norm": 0.032210394740104675,
|
266 |
+
"learning_rate": 4.582843713278496e-06,
|
267 |
+
"loss": 0.0001,
|
268 |
+
"step": 74
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.08904510837727006,
|
272 |
+
"grad_norm": 0.2614983916282654,
|
273 |
+
"learning_rate": 4.571092831962397e-06,
|
274 |
+
"loss": 0.0008,
|
275 |
+
"step": 76
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.0913884007029877,
|
279 |
+
"grad_norm": 0.0012551415711641312,
|
280 |
+
"learning_rate": 4.5593419506462985e-06,
|
281 |
+
"loss": 0.0,
|
282 |
+
"step": 78
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.09373169302870533,
|
286 |
+
"grad_norm": 0.0019108065171167254,
|
287 |
+
"learning_rate": 4.5475910693302e-06,
|
288 |
+
"loss": 0.0,
|
289 |
+
"step": 80
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.09607498535442296,
|
293 |
+
"grad_norm": 0.02294810675084591,
|
294 |
+
"learning_rate": 4.535840188014101e-06,
|
295 |
+
"loss": 0.0001,
|
296 |
+
"step": 82
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.0984182776801406,
|
300 |
+
"grad_norm": 0.0012388118775561452,
|
301 |
+
"learning_rate": 4.524089306698003e-06,
|
302 |
+
"loss": 0.0,
|
303 |
+
"step": 84
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.10076157000585823,
|
307 |
+
"grad_norm": 0.001227575121447444,
|
308 |
+
"learning_rate": 4.512338425381904e-06,
|
309 |
+
"loss": 0.0001,
|
310 |
+
"step": 86
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.10310486233157587,
|
314 |
+
"grad_norm": 0.004755712114274502,
|
315 |
+
"learning_rate": 4.5005875440658054e-06,
|
316 |
+
"loss": 0.0001,
|
317 |
+
"step": 88
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.1054481546572935,
|
321 |
+
"grad_norm": 0.00837083999067545,
|
322 |
+
"learning_rate": 4.488836662749707e-06,
|
323 |
+
"loss": 0.0001,
|
324 |
+
"step": 90
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.10779144698301113,
|
328 |
+
"grad_norm": 0.48219314217567444,
|
329 |
+
"learning_rate": 4.477085781433608e-06,
|
330 |
+
"loss": 0.0017,
|
331 |
+
"step": 92
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.11013473930872876,
|
335 |
+
"grad_norm": 0.022060217335820198,
|
336 |
+
"learning_rate": 4.465334900117509e-06,
|
337 |
+
"loss": 0.0001,
|
338 |
+
"step": 94
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.11247803163444639,
|
342 |
+
"grad_norm": 0.0019385352497920394,
|
343 |
+
"learning_rate": 4.45358401880141e-06,
|
344 |
+
"loss": 0.0,
|
345 |
+
"step": 96
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.11482132396016403,
|
349 |
+
"grad_norm": 0.01225442998111248,
|
350 |
+
"learning_rate": 4.4418331374853116e-06,
|
351 |
+
"loss": 0.0001,
|
352 |
+
"step": 98
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.11716461628588166,
|
356 |
+
"grad_norm": 0.0005759520572610199,
|
357 |
+
"learning_rate": 4.430082256169213e-06,
|
358 |
+
"loss": 0.0,
|
359 |
+
"step": 100
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.1195079086115993,
|
363 |
+
"grad_norm": 0.02452813647687435,
|
364 |
+
"learning_rate": 4.418331374853114e-06,
|
365 |
+
"loss": 0.0001,
|
366 |
+
"step": 102
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.12185120093731693,
|
370 |
+
"grad_norm": 0.0078084710985422134,
|
371 |
+
"learning_rate": 4.406580493537015e-06,
|
372 |
+
"loss": 0.0001,
|
373 |
+
"step": 104
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.12419449326303457,
|
377 |
+
"grad_norm": 0.004263446666300297,
|
378 |
+
"learning_rate": 4.394829612220917e-06,
|
379 |
+
"loss": 0.0001,
|
380 |
+
"step": 106
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.1265377855887522,
|
384 |
+
"grad_norm": 0.0016304058954119682,
|
385 |
+
"learning_rate": 4.3830787309048185e-06,
|
386 |
+
"loss": 0.0001,
|
387 |
+
"step": 108
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.12888107791446984,
|
391 |
+
"grad_norm": 0.011672005988657475,
|
392 |
+
"learning_rate": 4.37132784958872e-06,
|
393 |
+
"loss": 0.0002,
|
394 |
+
"step": 110
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.13122437024018746,
|
398 |
+
"grad_norm": 0.002603155327960849,
|
399 |
+
"learning_rate": 4.359576968272621e-06,
|
400 |
+
"loss": 0.0,
|
401 |
+
"step": 112
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.1335676625659051,
|
405 |
+
"grad_norm": 0.005059251096099615,
|
406 |
+
"learning_rate": 4.347826086956522e-06,
|
407 |
+
"loss": 0.0001,
|
408 |
+
"step": 114
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.13591095489162272,
|
412 |
+
"grad_norm": 0.0005816388293169439,
|
413 |
+
"learning_rate": 4.3360752056404234e-06,
|
414 |
+
"loss": 0.0001,
|
415 |
+
"step": 116
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.13825424721734036,
|
419 |
+
"grad_norm": 0.019756818190217018,
|
420 |
+
"learning_rate": 4.324324324324325e-06,
|
421 |
+
"loss": 0.0001,
|
422 |
+
"step": 118
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.140597539543058,
|
426 |
+
"grad_norm": 0.0023519208189100027,
|
427 |
+
"learning_rate": 4.312573443008226e-06,
|
428 |
+
"loss": 0.0,
|
429 |
+
"step": 120
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.14294083186877563,
|
433 |
+
"grad_norm": 0.0028086318634450436,
|
434 |
+
"learning_rate": 4.300822561692127e-06,
|
435 |
+
"loss": 0.0,
|
436 |
+
"step": 122
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.14528412419449327,
|
440 |
+
"grad_norm": 0.0022307527251541615,
|
441 |
+
"learning_rate": 4.289071680376028e-06,
|
442 |
+
"loss": 0.0,
|
443 |
+
"step": 124
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.14762741652021089,
|
447 |
+
"grad_norm": 0.014247684739530087,
|
448 |
+
"learning_rate": 4.2773207990599296e-06,
|
449 |
+
"loss": 0.0001,
|
450 |
+
"step": 126
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.14997070884592853,
|
454 |
+
"grad_norm": 0.00011139630805701017,
|
455 |
+
"learning_rate": 4.265569917743831e-06,
|
456 |
+
"loss": 0.0,
|
457 |
+
"step": 128
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.15231400117164617,
|
461 |
+
"grad_norm": 0.000514341751113534,
|
462 |
+
"learning_rate": 4.253819036427733e-06,
|
463 |
+
"loss": 0.0,
|
464 |
+
"step": 130
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1546572934973638,
|
468 |
+
"grad_norm": 0.002176255453377962,
|
469 |
+
"learning_rate": 4.242068155111634e-06,
|
470 |
+
"loss": 0.0001,
|
471 |
+
"step": 132
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.15700058582308143,
|
475 |
+
"grad_norm": 0.018497969955205917,
|
476 |
+
"learning_rate": 4.230317273795535e-06,
|
477 |
+
"loss": 0.0001,
|
478 |
+
"step": 134
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.15934387814879905,
|
482 |
+
"grad_norm": 0.013157431036233902,
|
483 |
+
"learning_rate": 4.2185663924794365e-06,
|
484 |
+
"loss": 0.0001,
|
485 |
+
"step": 136
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.1616871704745167,
|
489 |
+
"grad_norm": 0.007630129344761372,
|
490 |
+
"learning_rate": 4.206815511163338e-06,
|
491 |
+
"loss": 0.0,
|
492 |
+
"step": 138
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.16403046280023434,
|
496 |
+
"grad_norm": 0.0008055138750933111,
|
497 |
+
"learning_rate": 4.195064629847239e-06,
|
498 |
+
"loss": 0.0001,
|
499 |
+
"step": 140
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.16637375512595196,
|
503 |
+
"grad_norm": 0.006306421477347612,
|
504 |
+
"learning_rate": 4.18331374853114e-06,
|
505 |
+
"loss": 0.0,
|
506 |
+
"step": 142
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.1687170474516696,
|
510 |
+
"grad_norm": 0.020266445353627205,
|
511 |
+
"learning_rate": 4.1715628672150414e-06,
|
512 |
+
"loss": 0.0001,
|
513 |
+
"step": 144
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.17106033977738722,
|
517 |
+
"grad_norm": 0.00037427974166348577,
|
518 |
+
"learning_rate": 4.159811985898943e-06,
|
519 |
+
"loss": 0.0,
|
520 |
+
"step": 146
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.17340363210310486,
|
524 |
+
"grad_norm": 0.004259356763213873,
|
525 |
+
"learning_rate": 4.148061104582844e-06,
|
526 |
+
"loss": 0.0001,
|
527 |
+
"step": 148
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.1757469244288225,
|
531 |
+
"grad_norm": 0.0010232679778710008,
|
532 |
+
"learning_rate": 4.136310223266745e-06,
|
533 |
+
"loss": 0.0001,
|
534 |
+
"step": 150
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.17809021675454012,
|
538 |
+
"grad_norm": 0.003952402155846357,
|
539 |
+
"learning_rate": 4.124559341950647e-06,
|
540 |
+
"loss": 0.0,
|
541 |
+
"step": 152
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.18043350908025776,
|
545 |
+
"grad_norm": 0.0013295585522428155,
|
546 |
+
"learning_rate": 4.112808460634548e-06,
|
547 |
+
"loss": 0.0,
|
548 |
+
"step": 154
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.1827768014059754,
|
552 |
+
"grad_norm": 0.013831949792802334,
|
553 |
+
"learning_rate": 4.10105757931845e-06,
|
554 |
+
"loss": 0.0001,
|
555 |
+
"step": 156
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.18512009373169303,
|
559 |
+
"grad_norm": 0.0036904062144458294,
|
560 |
+
"learning_rate": 4.089306698002351e-06,
|
561 |
+
"loss": 0.0,
|
562 |
+
"step": 158
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.18746338605741067,
|
566 |
+
"grad_norm": 0.002993196714669466,
|
567 |
+
"learning_rate": 4.077555816686252e-06,
|
568 |
+
"loss": 0.0,
|
569 |
+
"step": 160
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.18980667838312829,
|
573 |
+
"grad_norm": 0.0016740068094804883,
|
574 |
+
"learning_rate": 4.0658049353701525e-06,
|
575 |
+
"loss": 0.0001,
|
576 |
+
"step": 162
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.19214997070884593,
|
580 |
+
"grad_norm": 0.012307717464864254,
|
581 |
+
"learning_rate": 4.0540540540540545e-06,
|
582 |
+
"loss": 0.0001,
|
583 |
+
"step": 164
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.19449326303456357,
|
587 |
+
"grad_norm": 0.0012654109159484506,
|
588 |
+
"learning_rate": 4.042303172737956e-06,
|
589 |
+
"loss": 0.0,
|
590 |
+
"step": 166
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.1968365553602812,
|
594 |
+
"grad_norm": 0.12437883019447327,
|
595 |
+
"learning_rate": 4.030552291421857e-06,
|
596 |
+
"loss": 0.0006,
|
597 |
+
"step": 168
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.19917984768599883,
|
601 |
+
"grad_norm": 8.974138472694904e-05,
|
602 |
+
"learning_rate": 4.018801410105758e-06,
|
603 |
+
"loss": 0.0,
|
604 |
+
"step": 170
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.20152314001171645,
|
608 |
+
"grad_norm": 0.0011903212871402502,
|
609 |
+
"learning_rate": 4.007050528789659e-06,
|
610 |
+
"loss": 0.0001,
|
611 |
+
"step": 172
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.2038664323374341,
|
615 |
+
"grad_norm": 0.012350277975201607,
|
616 |
+
"learning_rate": 3.995299647473561e-06,
|
617 |
+
"loss": 0.0001,
|
618 |
+
"step": 174
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.20620972466315174,
|
622 |
+
"grad_norm": 0.01664598099887371,
|
623 |
+
"learning_rate": 3.983548766157463e-06,
|
624 |
+
"loss": 0.0001,
|
625 |
+
"step": 176
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.20855301698886936,
|
629 |
+
"grad_norm": 0.0064240009523928165,
|
630 |
+
"learning_rate": 3.971797884841364e-06,
|
631 |
+
"loss": 0.0001,
|
632 |
+
"step": 178
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.210896309314587,
|
636 |
+
"grad_norm": 0.0031362581066787243,
|
637 |
+
"learning_rate": 3.960047003525264e-06,
|
638 |
+
"loss": 0.0,
|
639 |
+
"step": 180
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.21323960164030462,
|
643 |
+
"grad_norm": 0.00012566300574690104,
|
644 |
+
"learning_rate": 3.9482961222091655e-06,
|
645 |
+
"loss": 0.0001,
|
646 |
+
"step": 182
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.21558289396602226,
|
650 |
+
"grad_norm": 0.0018261070363223553,
|
651 |
+
"learning_rate": 3.936545240893067e-06,
|
652 |
+
"loss": 0.0,
|
653 |
+
"step": 184
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.2179261862917399,
|
657 |
+
"grad_norm": 0.0010897299507632852,
|
658 |
+
"learning_rate": 3.924794359576969e-06,
|
659 |
+
"loss": 0.0,
|
660 |
+
"step": 186
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.22026947861745752,
|
664 |
+
"grad_norm": 0.006528445053845644,
|
665 |
+
"learning_rate": 3.91304347826087e-06,
|
666 |
+
"loss": 0.0,
|
667 |
+
"step": 188
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.22261277094317516,
|
671 |
+
"grad_norm": 0.4626096785068512,
|
672 |
+
"learning_rate": 3.901292596944771e-06,
|
673 |
+
"loss": 0.0009,
|
674 |
+
"step": 190
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.22495606326889278,
|
678 |
+
"grad_norm": 0.002359338803216815,
|
679 |
+
"learning_rate": 3.8895417156286725e-06,
|
680 |
+
"loss": 0.0,
|
681 |
+
"step": 192
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.22729935559461042,
|
685 |
+
"grad_norm": 0.004821418318897486,
|
686 |
+
"learning_rate": 3.877790834312574e-06,
|
687 |
+
"loss": 0.0,
|
688 |
+
"step": 194
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.22964264792032807,
|
692 |
+
"grad_norm": 0.0011465001152828336,
|
693 |
+
"learning_rate": 3.866039952996475e-06,
|
694 |
+
"loss": 0.0008,
|
695 |
+
"step": 196
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.23198594024604569,
|
699 |
+
"grad_norm": 0.0007381247123703361,
|
700 |
+
"learning_rate": 3.854289071680376e-06,
|
701 |
+
"loss": 0.0001,
|
702 |
+
"step": 198
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.23432923257176333,
|
706 |
+
"grad_norm": 0.0023091183975338936,
|
707 |
+
"learning_rate": 3.842538190364277e-06,
|
708 |
+
"loss": 0.0,
|
709 |
+
"step": 200
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.23667252489748097,
|
713 |
+
"grad_norm": 0.0005714365397579968,
|
714 |
+
"learning_rate": 3.830787309048179e-06,
|
715 |
+
"loss": 0.0,
|
716 |
+
"step": 202
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.2390158172231986,
|
720 |
+
"grad_norm": 0.00351692084223032,
|
721 |
+
"learning_rate": 3.81903642773208e-06,
|
722 |
+
"loss": 0.0,
|
723 |
+
"step": 204
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.24135910954891623,
|
727 |
+
"grad_norm": 5.926425728830509e-05,
|
728 |
+
"learning_rate": 3.8072855464159815e-06,
|
729 |
+
"loss": 0.0,
|
730 |
+
"step": 206
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.24370240187463385,
|
734 |
+
"grad_norm": 0.0016421001637354493,
|
735 |
+
"learning_rate": 3.7955346650998827e-06,
|
736 |
+
"loss": 0.0,
|
737 |
+
"step": 208
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.2460456942003515,
|
741 |
+
"grad_norm": 0.012118808925151825,
|
742 |
+
"learning_rate": 3.7837837837837844e-06,
|
743 |
+
"loss": 0.0001,
|
744 |
+
"step": 210
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.24838898652606914,
|
748 |
+
"grad_norm": 0.00024874648079276085,
|
749 |
+
"learning_rate": 3.7720329024676856e-06,
|
750 |
+
"loss": 0.0002,
|
751 |
+
"step": 212
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.2507322788517868,
|
755 |
+
"grad_norm": 0.0017625248292461038,
|
756 |
+
"learning_rate": 3.760282021151587e-06,
|
757 |
+
"loss": 0.0,
|
758 |
+
"step": 214
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.2530755711775044,
|
762 |
+
"grad_norm": 0.0007431196281686425,
|
763 |
+
"learning_rate": 3.748531139835488e-06,
|
764 |
+
"loss": 0.0,
|
765 |
+
"step": 216
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.255418863503222,
|
769 |
+
"grad_norm": 0.0007026457460597157,
|
770 |
+
"learning_rate": 3.7367802585193893e-06,
|
771 |
+
"loss": 0.0,
|
772 |
+
"step": 218
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.2577621558289397,
|
776 |
+
"grad_norm": 0.002397920237854123,
|
777 |
+
"learning_rate": 3.72502937720329e-06,
|
778 |
+
"loss": 0.0,
|
779 |
+
"step": 220
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.2601054481546573,
|
783 |
+
"grad_norm": 0.003177257487550378,
|
784 |
+
"learning_rate": 3.713278495887192e-06,
|
785 |
+
"loss": 0.0,
|
786 |
+
"step": 222
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.2624487404803749,
|
790 |
+
"grad_norm": 0.003142025787383318,
|
791 |
+
"learning_rate": 3.7015276145710934e-06,
|
792 |
+
"loss": 0.0001,
|
793 |
+
"step": 224
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.26479203280609254,
|
797 |
+
"grad_norm": 0.03788410872220993,
|
798 |
+
"learning_rate": 3.6897767332549946e-06,
|
799 |
+
"loss": 0.0002,
|
800 |
+
"step": 226
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.2671353251318102,
|
804 |
+
"grad_norm": 0.005685464479029179,
|
805 |
+
"learning_rate": 3.6780258519388954e-06,
|
806 |
+
"loss": 0.0003,
|
807 |
+
"step": 228
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.2694786174575278,
|
811 |
+
"grad_norm": 0.0010328789940103889,
|
812 |
+
"learning_rate": 3.6662749706227966e-06,
|
813 |
+
"loss": 0.0003,
|
814 |
+
"step": 230
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.27182190978324544,
|
818 |
+
"grad_norm": 0.0052024442702531815,
|
819 |
+
"learning_rate": 3.6545240893066987e-06,
|
820 |
+
"loss": 0.0,
|
821 |
+
"step": 232
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.2741652021089631,
|
825 |
+
"grad_norm": 0.006033598445355892,
|
826 |
+
"learning_rate": 3.6427732079906e-06,
|
827 |
+
"loss": 0.0,
|
828 |
+
"step": 234
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.27650849443468073,
|
832 |
+
"grad_norm": 0.00023948443413246423,
|
833 |
+
"learning_rate": 3.6310223266745007e-06,
|
834 |
+
"loss": 0.0001,
|
835 |
+
"step": 236
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.27885178676039835,
|
839 |
+
"grad_norm": 0.00016467843670397997,
|
840 |
+
"learning_rate": 3.619271445358402e-06,
|
841 |
+
"loss": 0.0,
|
842 |
+
"step": 238
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.281195079086116,
|
846 |
+
"grad_norm": 0.003566320287063718,
|
847 |
+
"learning_rate": 3.607520564042303e-06,
|
848 |
+
"loss": 0.0,
|
849 |
+
"step": 240
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.28353837141183363,
|
853 |
+
"grad_norm": 0.00033969045034609735,
|
854 |
+
"learning_rate": 3.5957696827262044e-06,
|
855 |
+
"loss": 0.0,
|
856 |
+
"step": 242
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.28588166373755125,
|
860 |
+
"grad_norm": 0.0033994223922491074,
|
861 |
+
"learning_rate": 3.5840188014101065e-06,
|
862 |
+
"loss": 0.0,
|
863 |
+
"step": 244
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.28822495606326887,
|
867 |
+
"grad_norm": 0.14746786653995514,
|
868 |
+
"learning_rate": 3.5722679200940073e-06,
|
869 |
+
"loss": 0.0008,
|
870 |
+
"step": 246
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.29056824838898654,
|
874 |
+
"grad_norm": 0.012470235116779804,
|
875 |
+
"learning_rate": 3.5605170387779085e-06,
|
876 |
+
"loss": 0.0,
|
877 |
+
"step": 248
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.29291154071470415,
|
881 |
+
"grad_norm": 0.08307931572198868,
|
882 |
+
"learning_rate": 3.5487661574618097e-06,
|
883 |
+
"loss": 0.0003,
|
884 |
+
"step": 250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.29525483304042177,
|
888 |
+
"grad_norm": 0.00033245363738387823,
|
889 |
+
"learning_rate": 3.537015276145711e-06,
|
890 |
+
"loss": 0.0,
|
891 |
+
"step": 252
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.29759812536613944,
|
895 |
+
"grad_norm": 0.0018247144762426615,
|
896 |
+
"learning_rate": 3.525264394829612e-06,
|
897 |
+
"loss": 0.0,
|
898 |
+
"step": 254
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.29994141769185706,
|
902 |
+
"grad_norm": 0.0011103990254923701,
|
903 |
+
"learning_rate": 3.513513513513514e-06,
|
904 |
+
"loss": 0.0001,
|
905 |
+
"step": 256
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.3022847100175747,
|
909 |
+
"grad_norm": 0.0010811882093548775,
|
910 |
+
"learning_rate": 3.501762632197415e-06,
|
911 |
+
"loss": 0.0,
|
912 |
+
"step": 258
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.30462800234329235,
|
916 |
+
"grad_norm": 0.011172047816216946,
|
917 |
+
"learning_rate": 3.4900117508813163e-06,
|
918 |
+
"loss": 0.0001,
|
919 |
+
"step": 260
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.30697129466900996,
|
923 |
+
"grad_norm": 0.0013676233356818557,
|
924 |
+
"learning_rate": 3.4782608695652175e-06,
|
925 |
+
"loss": 0.0,
|
926 |
+
"step": 262
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.3093145869947276,
|
930 |
+
"grad_norm": 0.002147970488294959,
|
931 |
+
"learning_rate": 3.4665099882491187e-06,
|
932 |
+
"loss": 0.0,
|
933 |
+
"step": 264
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.31165787932044525,
|
937 |
+
"grad_norm": 0.0009826518362388015,
|
938 |
+
"learning_rate": 3.4547591069330204e-06,
|
939 |
+
"loss": 0.0,
|
940 |
+
"step": 266
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.31400117164616287,
|
944 |
+
"grad_norm": 0.001499099307693541,
|
945 |
+
"learning_rate": 3.4430082256169216e-06,
|
946 |
+
"loss": 0.0,
|
947 |
+
"step": 268
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.3163444639718805,
|
951 |
+
"grad_norm": 0.001323301112279296,
|
952 |
+
"learning_rate": 3.431257344300823e-06,
|
953 |
+
"loss": 0.0,
|
954 |
+
"step": 270
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.3186877562975981,
|
958 |
+
"grad_norm": 0.018010340631008148,
|
959 |
+
"learning_rate": 3.419506462984724e-06,
|
960 |
+
"loss": 0.0005,
|
961 |
+
"step": 272
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.3210310486233158,
|
965 |
+
"grad_norm": 0.0024064648896455765,
|
966 |
+
"learning_rate": 3.4077555816686253e-06,
|
967 |
+
"loss": 0.0,
|
968 |
+
"step": 274
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.3233743409490334,
|
972 |
+
"grad_norm": 0.02396260015666485,
|
973 |
+
"learning_rate": 3.3960047003525265e-06,
|
974 |
+
"loss": 0.0001,
|
975 |
+
"step": 276
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.325717633274751,
|
979 |
+
"grad_norm": 0.002070352202281356,
|
980 |
+
"learning_rate": 3.384253819036428e-06,
|
981 |
+
"loss": 0.0,
|
982 |
+
"step": 278
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.3280609256004687,
|
986 |
+
"grad_norm": 0.0003108434902969748,
|
987 |
+
"learning_rate": 3.3725029377203294e-06,
|
988 |
+
"loss": 0.0001,
|
989 |
+
"step": 280
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.3304042179261863,
|
993 |
+
"grad_norm": 0.006573045626282692,
|
994 |
+
"learning_rate": 3.3607520564042306e-06,
|
995 |
+
"loss": 0.0001,
|
996 |
+
"step": 282
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.3327475102519039,
|
1000 |
+
"grad_norm": 0.0004413512069731951,
|
1001 |
+
"learning_rate": 3.349001175088132e-06,
|
1002 |
+
"loss": 0.0001,
|
1003 |
+
"step": 284
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.3350908025776216,
|
1007 |
+
"grad_norm": 0.0005645502242259681,
|
1008 |
+
"learning_rate": 3.337250293772033e-06,
|
1009 |
+
"loss": 0.0,
|
1010 |
+
"step": 286
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.3374340949033392,
|
1014 |
+
"grad_norm": 0.00034579774364829063,
|
1015 |
+
"learning_rate": 3.3254994124559343e-06,
|
1016 |
+
"loss": 0.0,
|
1017 |
+
"step": 288
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.3397773872290568,
|
1021 |
+
"grad_norm": 0.003136229468509555,
|
1022 |
+
"learning_rate": 3.313748531139836e-06,
|
1023 |
+
"loss": 0.0,
|
1024 |
+
"step": 290
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.34212067955477443,
|
1028 |
+
"grad_norm": 0.0031148705165833235,
|
1029 |
+
"learning_rate": 3.301997649823737e-06,
|
1030 |
+
"loss": 0.0,
|
1031 |
+
"step": 292
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.3444639718804921,
|
1035 |
+
"grad_norm": 0.0012612566351890564,
|
1036 |
+
"learning_rate": 3.2902467685076384e-06,
|
1037 |
+
"loss": 0.0,
|
1038 |
+
"step": 294
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.3468072642062097,
|
1042 |
+
"grad_norm": 0.0007469533011317253,
|
1043 |
+
"learning_rate": 3.2784958871915396e-06,
|
1044 |
+
"loss": 0.0,
|
1045 |
+
"step": 296
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.34915055653192734,
|
1049 |
+
"grad_norm": 0.04412250965833664,
|
1050 |
+
"learning_rate": 3.266745005875441e-06,
|
1051 |
+
"loss": 0.0003,
|
1052 |
+
"step": 298
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.351493848857645,
|
1056 |
+
"grad_norm": 0.004462533164769411,
|
1057 |
+
"learning_rate": 3.2549941245593425e-06,
|
1058 |
+
"loss": 0.0088,
|
1059 |
+
"step": 300
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.3538371411833626,
|
1063 |
+
"grad_norm": 0.002911294111981988,
|
1064 |
+
"learning_rate": 3.2432432432432437e-06,
|
1065 |
+
"loss": 0.0006,
|
1066 |
+
"step": 302
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.35618043350908024,
|
1070 |
+
"grad_norm": 0.0015191801358014345,
|
1071 |
+
"learning_rate": 3.231492361927145e-06,
|
1072 |
+
"loss": 0.0,
|
1073 |
+
"step": 304
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.3585237258347979,
|
1077 |
+
"grad_norm": 0.017380721867084503,
|
1078 |
+
"learning_rate": 3.219741480611046e-06,
|
1079 |
+
"loss": 0.0094,
|
1080 |
+
"step": 306
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.36086701816051553,
|
1084 |
+
"grad_norm": 0.002749436302110553,
|
1085 |
+
"learning_rate": 3.2079905992949474e-06,
|
1086 |
+
"loss": 0.0001,
|
1087 |
+
"step": 308
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.36321031048623315,
|
1091 |
+
"grad_norm": 0.0008673086995258927,
|
1092 |
+
"learning_rate": 3.1962397179788486e-06,
|
1093 |
+
"loss": 0.0,
|
1094 |
+
"step": 310
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.3655536028119508,
|
1098 |
+
"grad_norm": 0.00361701101064682,
|
1099 |
+
"learning_rate": 3.1844888366627503e-06,
|
1100 |
+
"loss": 0.0,
|
1101 |
+
"step": 312
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.36789689513766843,
|
1105 |
+
"grad_norm": 0.006906528025865555,
|
1106 |
+
"learning_rate": 3.1727379553466515e-06,
|
1107 |
+
"loss": 0.0,
|
1108 |
+
"step": 314
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.37024018746338605,
|
1112 |
+
"grad_norm": 2.259305238723755,
|
1113 |
+
"learning_rate": 3.1609870740305527e-06,
|
1114 |
+
"loss": 0.0157,
|
1115 |
+
"step": 316
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.37258347978910367,
|
1119 |
+
"grad_norm": 0.00017454673070460558,
|
1120 |
+
"learning_rate": 3.149236192714454e-06,
|
1121 |
+
"loss": 0.0,
|
1122 |
+
"step": 318
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.37492677211482134,
|
1126 |
+
"grad_norm": 0.16197967529296875,
|
1127 |
+
"learning_rate": 3.137485311398355e-06,
|
1128 |
+
"loss": 0.0009,
|
1129 |
+
"step": 320
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.37727006444053895,
|
1133 |
+
"grad_norm": 0.002247605938464403,
|
1134 |
+
"learning_rate": 3.1257344300822564e-06,
|
1135 |
+
"loss": 0.0,
|
1136 |
+
"step": 322
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.37961335676625657,
|
1140 |
+
"grad_norm": 0.023727795109152794,
|
1141 |
+
"learning_rate": 3.113983548766158e-06,
|
1142 |
+
"loss": 0.0001,
|
1143 |
+
"step": 324
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.38195664909197424,
|
1147 |
+
"grad_norm": 0.008455273695290089,
|
1148 |
+
"learning_rate": 3.1022326674500592e-06,
|
1149 |
+
"loss": 0.0001,
|
1150 |
+
"step": 326
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.38429994141769186,
|
1154 |
+
"grad_norm": 0.00022873218404129148,
|
1155 |
+
"learning_rate": 3.0904817861339605e-06,
|
1156 |
+
"loss": 0.0,
|
1157 |
+
"step": 328
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.3866432337434095,
|
1161 |
+
"grad_norm": 3.000872850418091,
|
1162 |
+
"learning_rate": 3.0787309048178617e-06,
|
1163 |
+
"loss": 0.055,
|
1164 |
+
"step": 330
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.38898652606912715,
|
1168 |
+
"grad_norm": 0.002177221467718482,
|
1169 |
+
"learning_rate": 3.066980023501763e-06,
|
1170 |
+
"loss": 0.0,
|
1171 |
+
"step": 332
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.39132981839484476,
|
1175 |
+
"grad_norm": 0.002786975121125579,
|
1176 |
+
"learning_rate": 3.0552291421856637e-06,
|
1177 |
+
"loss": 0.0,
|
1178 |
+
"step": 334
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.3936731107205624,
|
1182 |
+
"grad_norm": 0.004335256293416023,
|
1183 |
+
"learning_rate": 3.043478260869566e-06,
|
1184 |
+
"loss": 0.0,
|
1185 |
+
"step": 336
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.39601640304628,
|
1189 |
+
"grad_norm": 0.007627409417182207,
|
1190 |
+
"learning_rate": 3.031727379553467e-06,
|
1191 |
+
"loss": 0.0001,
|
1192 |
+
"step": 338
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.39835969537199767,
|
1196 |
+
"grad_norm": 0.002631911775097251,
|
1197 |
+
"learning_rate": 3.0199764982373682e-06,
|
1198 |
+
"loss": 0.0,
|
1199 |
+
"step": 340
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.4007029876977153,
|
1203 |
+
"grad_norm": 0.009561799466609955,
|
1204 |
+
"learning_rate": 3.008225616921269e-06,
|
1205 |
+
"loss": 0.0001,
|
1206 |
+
"step": 342
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.4030462800234329,
|
1210 |
+
"grad_norm": 0.0026635443791747093,
|
1211 |
+
"learning_rate": 2.9964747356051703e-06,
|
1212 |
+
"loss": 0.0001,
|
1213 |
+
"step": 344
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.4053895723491506,
|
1217 |
+
"grad_norm": 0.0001533351169200614,
|
1218 |
+
"learning_rate": 2.9847238542890723e-06,
|
1219 |
+
"loss": 0.0,
|
1220 |
+
"step": 346
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.4077328646748682,
|
1224 |
+
"grad_norm": 0.0835270956158638,
|
1225 |
+
"learning_rate": 2.9729729729729736e-06,
|
1226 |
+
"loss": 0.0005,
|
1227 |
+
"step": 348
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.4100761570005858,
|
1231 |
+
"grad_norm": 0.003761101048439741,
|
1232 |
+
"learning_rate": 2.9612220916568744e-06,
|
1233 |
+
"loss": 0.0,
|
1234 |
+
"step": 350
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.4124194493263035,
|
1238 |
+
"grad_norm": 0.01136633288115263,
|
1239 |
+
"learning_rate": 2.9494712103407756e-06,
|
1240 |
+
"loss": 0.0002,
|
1241 |
+
"step": 352
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.4147627416520211,
|
1245 |
+
"grad_norm": 0.007711971178650856,
|
1246 |
+
"learning_rate": 2.937720329024677e-06,
|
1247 |
+
"loss": 0.0001,
|
1248 |
+
"step": 354
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.4171060339777387,
|
1252 |
+
"grad_norm": 0.0003854953683912754,
|
1253 |
+
"learning_rate": 2.925969447708578e-06,
|
1254 |
+
"loss": 0.0,
|
1255 |
+
"step": 356
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.4194493263034564,
|
1259 |
+
"grad_norm": 0.019140860065817833,
|
1260 |
+
"learning_rate": 2.91421856639248e-06,
|
1261 |
+
"loss": 0.0001,
|
1262 |
+
"step": 358
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.421792618629174,
|
1266 |
+
"grad_norm": 0.0013410028768703341,
|
1267 |
+
"learning_rate": 2.902467685076381e-06,
|
1268 |
+
"loss": 0.0003,
|
1269 |
+
"step": 360
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.4241359109548916,
|
1273 |
+
"grad_norm": 0.0011243935441598296,
|
1274 |
+
"learning_rate": 2.890716803760282e-06,
|
1275 |
+
"loss": 0.0001,
|
1276 |
+
"step": 362
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.42647920328060923,
|
1280 |
+
"grad_norm": 0.012134709395468235,
|
1281 |
+
"learning_rate": 2.8789659224441834e-06,
|
1282 |
+
"loss": 0.0001,
|
1283 |
+
"step": 364
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.4288224956063269,
|
1287 |
+
"grad_norm": 0.0028234529308974743,
|
1288 |
+
"learning_rate": 2.8672150411280846e-06,
|
1289 |
+
"loss": 0.0,
|
1290 |
+
"step": 366
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.4311657879320445,
|
1294 |
+
"grad_norm": 0.004319467581808567,
|
1295 |
+
"learning_rate": 2.855464159811986e-06,
|
1296 |
+
"loss": 0.0,
|
1297 |
+
"step": 368
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.43350908025776214,
|
1301 |
+
"grad_norm": 0.0068093533627688885,
|
1302 |
+
"learning_rate": 2.8437132784958875e-06,
|
1303 |
+
"loss": 0.0001,
|
1304 |
+
"step": 370
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.4358523725834798,
|
1308 |
+
"grad_norm": 0.016774361953139305,
|
1309 |
+
"learning_rate": 2.8319623971797887e-06,
|
1310 |
+
"loss": 0.0001,
|
1311 |
+
"step": 372
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4381956649091974,
|
1315 |
+
"grad_norm": 0.014978869818150997,
|
1316 |
+
"learning_rate": 2.82021151586369e-06,
|
1317 |
+
"loss": 0.0001,
|
1318 |
+
"step": 374
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.44053895723491504,
|
1322 |
+
"grad_norm": 0.0010881100315600634,
|
1323 |
+
"learning_rate": 2.808460634547591e-06,
|
1324 |
+
"loss": 0.0004,
|
1325 |
+
"step": 376
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.4428822495606327,
|
1329 |
+
"grad_norm": 0.05522293969988823,
|
1330 |
+
"learning_rate": 2.7967097532314924e-06,
|
1331 |
+
"loss": 0.0002,
|
1332 |
+
"step": 378
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.44522554188635033,
|
1336 |
+
"grad_norm": 0.0027575818821787834,
|
1337 |
+
"learning_rate": 2.784958871915394e-06,
|
1338 |
+
"loss": 0.0,
|
1339 |
+
"step": 380
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.44756883421206795,
|
1343 |
+
"grad_norm": 0.0006020054570399225,
|
1344 |
+
"learning_rate": 2.7732079905992952e-06,
|
1345 |
+
"loss": 0.0005,
|
1346 |
+
"step": 382
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.44991212653778556,
|
1350 |
+
"grad_norm": 0.0025616425555199385,
|
1351 |
+
"learning_rate": 2.7614571092831965e-06,
|
1352 |
+
"loss": 0.0,
|
1353 |
+
"step": 384
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.45225541886350323,
|
1357 |
+
"grad_norm": 0.0018823420396074653,
|
1358 |
+
"learning_rate": 2.7497062279670977e-06,
|
1359 |
+
"loss": 0.0,
|
1360 |
+
"step": 386
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.45459871118922085,
|
1364 |
+
"grad_norm": 0.003241207217797637,
|
1365 |
+
"learning_rate": 2.737955346650999e-06,
|
1366 |
+
"loss": 0.0,
|
1367 |
+
"step": 388
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.45694200351493847,
|
1371 |
+
"grad_norm": 0.0010485474485903978,
|
1372 |
+
"learning_rate": 2.7262044653349e-06,
|
1373 |
+
"loss": 0.0002,
|
1374 |
+
"step": 390
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.45928529584065614,
|
1378 |
+
"grad_norm": 0.013366922736167908,
|
1379 |
+
"learning_rate": 2.714453584018802e-06,
|
1380 |
+
"loss": 0.0001,
|
1381 |
+
"step": 392
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.46162858816637375,
|
1385 |
+
"grad_norm": 0.0005886501166969538,
|
1386 |
+
"learning_rate": 2.702702702702703e-06,
|
1387 |
+
"loss": 0.0,
|
1388 |
+
"step": 394
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.46397188049209137,
|
1392 |
+
"grad_norm": 7.603697304148227e-05,
|
1393 |
+
"learning_rate": 2.6909518213866042e-06,
|
1394 |
+
"loss": 0.0,
|
1395 |
+
"step": 396
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.46631517281780904,
|
1399 |
+
"grad_norm": 0.000614571908954531,
|
1400 |
+
"learning_rate": 2.6792009400705055e-06,
|
1401 |
+
"loss": 0.0023,
|
1402 |
+
"step": 398
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.46865846514352666,
|
1406 |
+
"grad_norm": 0.046423882246017456,
|
1407 |
+
"learning_rate": 2.6674500587544067e-06,
|
1408 |
+
"loss": 0.0002,
|
1409 |
+
"step": 400
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.4710017574692443,
|
1413 |
+
"grad_norm": 0.0005994020029902458,
|
1414 |
+
"learning_rate": 2.655699177438308e-06,
|
1415 |
+
"loss": 0.0,
|
1416 |
+
"step": 402
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.47334504979496195,
|
1420 |
+
"grad_norm": 0.011609828099608421,
|
1421 |
+
"learning_rate": 2.6439482961222096e-06,
|
1422 |
+
"loss": 0.0001,
|
1423 |
+
"step": 404
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.47568834212067956,
|
1427 |
+
"grad_norm": 0.007135775871574879,
|
1428 |
+
"learning_rate": 2.632197414806111e-06,
|
1429 |
+
"loss": 0.0002,
|
1430 |
+
"step": 406
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.4780316344463972,
|
1434 |
+
"grad_norm": 0.0028773818630725145,
|
1435 |
+
"learning_rate": 2.620446533490012e-06,
|
1436 |
+
"loss": 0.0,
|
1437 |
+
"step": 408
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.4803749267721148,
|
1441 |
+
"grad_norm": 0.13341404497623444,
|
1442 |
+
"learning_rate": 2.6086956521739132e-06,
|
1443 |
+
"loss": 0.0008,
|
1444 |
+
"step": 410
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.48271821909783247,
|
1448 |
+
"grad_norm": 0.03130058944225311,
|
1449 |
+
"learning_rate": 2.5969447708578145e-06,
|
1450 |
+
"loss": 0.0001,
|
1451 |
+
"step": 412
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.4850615114235501,
|
1455 |
+
"grad_norm": 0.006637818645685911,
|
1456 |
+
"learning_rate": 2.5851938895417157e-06,
|
1457 |
+
"loss": 0.0001,
|
1458 |
+
"step": 414
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.4874048037492677,
|
1462 |
+
"grad_norm": 0.0006390800117515028,
|
1463 |
+
"learning_rate": 2.5734430082256173e-06,
|
1464 |
+
"loss": 0.0001,
|
1465 |
+
"step": 416
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.4897480960749854,
|
1469 |
+
"grad_norm": 0.02106345072388649,
|
1470 |
+
"learning_rate": 2.5616921269095186e-06,
|
1471 |
+
"loss": 0.0002,
|
1472 |
+
"step": 418
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.492091388400703,
|
1476 |
+
"grad_norm": 0.0009213433368131518,
|
1477 |
+
"learning_rate": 2.5499412455934198e-06,
|
1478 |
+
"loss": 0.0001,
|
1479 |
+
"step": 420
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.4944346807264206,
|
1483 |
+
"grad_norm": 2.5962471961975098,
|
1484 |
+
"learning_rate": 2.538190364277321e-06,
|
1485 |
+
"loss": 0.1436,
|
1486 |
+
"step": 422
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.4967779730521383,
|
1490 |
+
"grad_norm": 0.009386847727000713,
|
1491 |
+
"learning_rate": 2.5264394829612222e-06,
|
1492 |
+
"loss": 0.0001,
|
1493 |
+
"step": 424
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.4991212653778559,
|
1497 |
+
"grad_norm": 0.01308267842978239,
|
1498 |
+
"learning_rate": 2.514688601645124e-06,
|
1499 |
+
"loss": 0.0001,
|
1500 |
+
"step": 426
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.5014645577035736,
|
1504 |
+
"grad_norm": 0.006409250665456057,
|
1505 |
+
"learning_rate": 2.502937720329025e-06,
|
1506 |
+
"loss": 0.0,
|
1507 |
+
"step": 428
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.5038078500292912,
|
1511 |
+
"grad_norm": 0.0018047624034807086,
|
1512 |
+
"learning_rate": 2.4911868390129263e-06,
|
1513 |
+
"loss": 0.0001,
|
1514 |
+
"step": 430
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.5061511423550088,
|
1518 |
+
"grad_norm": 0.007056268397718668,
|
1519 |
+
"learning_rate": 2.4794359576968276e-06,
|
1520 |
+
"loss": 0.0,
|
1521 |
+
"step": 432
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.5084944346807264,
|
1525 |
+
"grad_norm": 2.4651243686676025,
|
1526 |
+
"learning_rate": 2.4676850763807288e-06,
|
1527 |
+
"loss": 0.0245,
|
1528 |
+
"step": 434
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.510837727006444,
|
1532 |
+
"grad_norm": 0.0025760605931282043,
|
1533 |
+
"learning_rate": 2.45593419506463e-06,
|
1534 |
+
"loss": 0.0,
|
1535 |
+
"step": 436
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.5131810193321616,
|
1539 |
+
"grad_norm": 0.059660654515028,
|
1540 |
+
"learning_rate": 2.4441833137485312e-06,
|
1541 |
+
"loss": 0.0003,
|
1542 |
+
"step": 438
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.5155243116578794,
|
1546 |
+
"grad_norm": 0.032668206840753555,
|
1547 |
+
"learning_rate": 2.432432432432433e-06,
|
1548 |
+
"loss": 0.0002,
|
1549 |
+
"step": 440
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.517867603983597,
|
1553 |
+
"grad_norm": 0.002476097084581852,
|
1554 |
+
"learning_rate": 2.420681551116334e-06,
|
1555 |
+
"loss": 0.0,
|
1556 |
+
"step": 442
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.5202108963093146,
|
1560 |
+
"grad_norm": 0.0005356927285902202,
|
1561 |
+
"learning_rate": 2.4089306698002353e-06,
|
1562 |
+
"loss": 0.0,
|
1563 |
+
"step": 444
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.5225541886350322,
|
1567 |
+
"grad_norm": 0.01949264481663704,
|
1568 |
+
"learning_rate": 2.3971797884841366e-06,
|
1569 |
+
"loss": 0.0001,
|
1570 |
+
"step": 446
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.5248974809607498,
|
1574 |
+
"grad_norm": 0.4609091281890869,
|
1575 |
+
"learning_rate": 2.3854289071680378e-06,
|
1576 |
+
"loss": 0.0013,
|
1577 |
+
"step": 448
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.5272407732864675,
|
1581 |
+
"grad_norm": 0.002268969314172864,
|
1582 |
+
"learning_rate": 2.373678025851939e-06,
|
1583 |
+
"loss": 0.027,
|
1584 |
+
"step": 450
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.5295840656121851,
|
1588 |
+
"grad_norm": 0.42679542303085327,
|
1589 |
+
"learning_rate": 2.3619271445358407e-06,
|
1590 |
+
"loss": 0.002,
|
1591 |
+
"step": 452
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.5319273579379028,
|
1595 |
+
"grad_norm": 0.030775954946875572,
|
1596 |
+
"learning_rate": 2.350176263219742e-06,
|
1597 |
+
"loss": 0.0001,
|
1598 |
+
"step": 454
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.5342706502636204,
|
1602 |
+
"grad_norm": 0.006208465900272131,
|
1603 |
+
"learning_rate": 2.3384253819036427e-06,
|
1604 |
+
"loss": 0.0001,
|
1605 |
+
"step": 456
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.536613942589338,
|
1609 |
+
"grad_norm": 0.001203950378112495,
|
1610 |
+
"learning_rate": 2.3266745005875443e-06,
|
1611 |
+
"loss": 0.0,
|
1612 |
+
"step": 458
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.5389572349150556,
|
1616 |
+
"grad_norm": 0.0013062539510428905,
|
1617 |
+
"learning_rate": 2.3149236192714456e-06,
|
1618 |
+
"loss": 0.0001,
|
1619 |
+
"step": 460
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.5413005272407733,
|
1623 |
+
"grad_norm": 0.014242034405469894,
|
1624 |
+
"learning_rate": 2.3031727379553468e-06,
|
1625 |
+
"loss": 0.0001,
|
1626 |
+
"step": 462
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.5436438195664909,
|
1630 |
+
"grad_norm": 0.0024558689910918474,
|
1631 |
+
"learning_rate": 2.291421856639248e-06,
|
1632 |
+
"loss": 0.0,
|
1633 |
+
"step": 464
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.5459871118922085,
|
1637 |
+
"grad_norm": 0.006871205288916826,
|
1638 |
+
"learning_rate": 2.2796709753231492e-06,
|
1639 |
+
"loss": 0.0,
|
1640 |
+
"step": 466
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.5483304042179262,
|
1644 |
+
"grad_norm": 0.016744021326303482,
|
1645 |
+
"learning_rate": 2.2679200940070505e-06,
|
1646 |
+
"loss": 0.0001,
|
1647 |
+
"step": 468
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.5506736965436438,
|
1651 |
+
"grad_norm": 0.0025478950701653957,
|
1652 |
+
"learning_rate": 2.256169212690952e-06,
|
1653 |
+
"loss": 0.0,
|
1654 |
+
"step": 470
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.5530169888693615,
|
1658 |
+
"grad_norm": 0.002553507685661316,
|
1659 |
+
"learning_rate": 2.2444183313748533e-06,
|
1660 |
+
"loss": 0.0,
|
1661 |
+
"step": 472
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.5553602811950791,
|
1665 |
+
"grad_norm": 0.0018396044615656137,
|
1666 |
+
"learning_rate": 2.2326674500587546e-06,
|
1667 |
+
"loss": 0.0002,
|
1668 |
+
"step": 474
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.5577035735207967,
|
1672 |
+
"grad_norm": 0.002036860678344965,
|
1673 |
+
"learning_rate": 2.2209165687426558e-06,
|
1674 |
+
"loss": 0.0,
|
1675 |
+
"step": 476
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.5600468658465143,
|
1679 |
+
"grad_norm": 0.0024688418488949537,
|
1680 |
+
"learning_rate": 2.209165687426557e-06,
|
1681 |
+
"loss": 0.0,
|
1682 |
+
"step": 478
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.562390158172232,
|
1686 |
+
"grad_norm": 0.0028820293955504894,
|
1687 |
+
"learning_rate": 2.1974148061104587e-06,
|
1688 |
+
"loss": 0.0001,
|
1689 |
+
"step": 480
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.5647334504979497,
|
1693 |
+
"grad_norm": 0.00978305283933878,
|
1694 |
+
"learning_rate": 2.18566392479436e-06,
|
1695 |
+
"loss": 0.0001,
|
1696 |
+
"step": 482
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.5670767428236673,
|
1700 |
+
"grad_norm": 0.147267147898674,
|
1701 |
+
"learning_rate": 2.173913043478261e-06,
|
1702 |
+
"loss": 0.0014,
|
1703 |
+
"step": 484
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.5694200351493849,
|
1707 |
+
"grad_norm": 0.005025573540478945,
|
1708 |
+
"learning_rate": 2.1621621621621623e-06,
|
1709 |
+
"loss": 0.0006,
|
1710 |
+
"step": 486
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.5717633274751025,
|
1714 |
+
"grad_norm": 0.0010051846038550138,
|
1715 |
+
"learning_rate": 2.1504112808460636e-06,
|
1716 |
+
"loss": 0.0003,
|
1717 |
+
"step": 488
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.5741066198008201,
|
1721 |
+
"grad_norm": 0.009055075235664845,
|
1722 |
+
"learning_rate": 2.1386603995299648e-06,
|
1723 |
+
"loss": 0.0001,
|
1724 |
+
"step": 490
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.5764499121265377,
|
1728 |
+
"grad_norm": 0.0077414545230567455,
|
1729 |
+
"learning_rate": 2.1269095182138664e-06,
|
1730 |
+
"loss": 0.0001,
|
1731 |
+
"step": 492
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.5787932044522555,
|
1735 |
+
"grad_norm": 0.0059761228039860725,
|
1736 |
+
"learning_rate": 2.1151586368977677e-06,
|
1737 |
+
"loss": 0.0001,
|
1738 |
+
"step": 494
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.5811364967779731,
|
1742 |
+
"grad_norm": 0.0014180493308231235,
|
1743 |
+
"learning_rate": 2.103407755581669e-06,
|
1744 |
+
"loss": 0.0,
|
1745 |
+
"step": 496
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.5834797891036907,
|
1749 |
+
"grad_norm": 0.0022345769684761763,
|
1750 |
+
"learning_rate": 2.09165687426557e-06,
|
1751 |
+
"loss": 0.0,
|
1752 |
+
"step": 498
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.5858230814294083,
|
1756 |
+
"grad_norm": 0.005645833443850279,
|
1757 |
+
"learning_rate": 2.0799059929494713e-06,
|
1758 |
+
"loss": 0.0001,
|
1759 |
+
"step": 500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.5881663737551259,
|
1763 |
+
"grad_norm": 0.011956258676946163,
|
1764 |
+
"learning_rate": 2.0681551116333726e-06,
|
1765 |
+
"loss": 0.0001,
|
1766 |
+
"step": 502
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.5905096660808435,
|
1770 |
+
"grad_norm": 0.01774289458990097,
|
1771 |
+
"learning_rate": 2.056404230317274e-06,
|
1772 |
+
"loss": 0.0002,
|
1773 |
+
"step": 504
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.5928529584065613,
|
1777 |
+
"grad_norm": 0.21751126646995544,
|
1778 |
+
"learning_rate": 2.0446533490011754e-06,
|
1779 |
+
"loss": 0.0012,
|
1780 |
+
"step": 506
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.5951962507322789,
|
1784 |
+
"grad_norm": 0.00307491235435009,
|
1785 |
+
"learning_rate": 2.0329024676850762e-06,
|
1786 |
+
"loss": 0.0,
|
1787 |
+
"step": 508
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.5975395430579965,
|
1791 |
+
"grad_norm": 0.021330738440155983,
|
1792 |
+
"learning_rate": 2.021151586368978e-06,
|
1793 |
+
"loss": 0.0002,
|
1794 |
+
"step": 510
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.5998828353837141,
|
1798 |
+
"grad_norm": 0.020080704241991043,
|
1799 |
+
"learning_rate": 2.009400705052879e-06,
|
1800 |
+
"loss": 0.0001,
|
1801 |
+
"step": 512
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.6022261277094317,
|
1805 |
+
"grad_norm": 0.020522406324744225,
|
1806 |
+
"learning_rate": 1.9976498237367803e-06,
|
1807 |
+
"loss": 0.0002,
|
1808 |
+
"step": 514
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.6045694200351494,
|
1812 |
+
"grad_norm": 0.0004171329492237419,
|
1813 |
+
"learning_rate": 1.985898942420682e-06,
|
1814 |
+
"loss": 0.0,
|
1815 |
+
"step": 516
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.606912712360867,
|
1819 |
+
"grad_norm": 0.0027696220204234123,
|
1820 |
+
"learning_rate": 1.9741480611045828e-06,
|
1821 |
+
"loss": 0.0,
|
1822 |
+
"step": 518
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.6092560046865847,
|
1826 |
+
"grad_norm": 0.021467505022883415,
|
1827 |
+
"learning_rate": 1.9623971797884844e-06,
|
1828 |
+
"loss": 0.0002,
|
1829 |
+
"step": 520
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.6115992970123023,
|
1833 |
+
"grad_norm": 0.011968536302447319,
|
1834 |
+
"learning_rate": 1.9506462984723856e-06,
|
1835 |
+
"loss": 0.0001,
|
1836 |
+
"step": 522
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.6139425893380199,
|
1840 |
+
"grad_norm": 0.0011503971181809902,
|
1841 |
+
"learning_rate": 1.938895417156287e-06,
|
1842 |
+
"loss": 0.0004,
|
1843 |
+
"step": 524
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.6162858816637375,
|
1847 |
+
"grad_norm": 0.02280554361641407,
|
1848 |
+
"learning_rate": 1.927144535840188e-06,
|
1849 |
+
"loss": 0.0002,
|
1850 |
+
"step": 526
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.6186291739894552,
|
1854 |
+
"grad_norm": 0.008415359072387218,
|
1855 |
+
"learning_rate": 1.9153936545240893e-06,
|
1856 |
+
"loss": 0.0001,
|
1857 |
+
"step": 528
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.6209724663151728,
|
1861 |
+
"grad_norm": 0.0024012764915823936,
|
1862 |
+
"learning_rate": 1.9036427732079908e-06,
|
1863 |
+
"loss": 0.0001,
|
1864 |
+
"step": 530
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.6233157586408905,
|
1868 |
+
"grad_norm": 0.010776808485388756,
|
1869 |
+
"learning_rate": 1.8918918918918922e-06,
|
1870 |
+
"loss": 0.0001,
|
1871 |
+
"step": 532
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.6256590509666081,
|
1875 |
+
"grad_norm": 0.017337538301944733,
|
1876 |
+
"learning_rate": 1.8801410105757934e-06,
|
1877 |
+
"loss": 0.0001,
|
1878 |
+
"step": 534
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.6280023432923257,
|
1882 |
+
"grad_norm": 0.0019926901441067457,
|
1883 |
+
"learning_rate": 1.8683901292596946e-06,
|
1884 |
+
"loss": 0.0001,
|
1885 |
+
"step": 536
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.6303456356180434,
|
1889 |
+
"grad_norm": 0.013480707071721554,
|
1890 |
+
"learning_rate": 1.856639247943596e-06,
|
1891 |
+
"loss": 0.0002,
|
1892 |
+
"step": 538
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.632688927943761,
|
1896 |
+
"grad_norm": 0.005608106963336468,
|
1897 |
+
"learning_rate": 1.8448883666274973e-06,
|
1898 |
+
"loss": 0.0002,
|
1899 |
+
"step": 540
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.6350322202694786,
|
1903 |
+
"grad_norm": 0.002639380283653736,
|
1904 |
+
"learning_rate": 1.8331374853113983e-06,
|
1905 |
+
"loss": 0.0001,
|
1906 |
+
"step": 542
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.6373755125951962,
|
1910 |
+
"grad_norm": 0.0022652854677289724,
|
1911 |
+
"learning_rate": 1.8213866039953e-06,
|
1912 |
+
"loss": 0.0002,
|
1913 |
+
"step": 544
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.6397188049209139,
|
1917 |
+
"grad_norm": 0.003624632954597473,
|
1918 |
+
"learning_rate": 1.809635722679201e-06,
|
1919 |
+
"loss": 0.0001,
|
1920 |
+
"step": 546
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.6420620972466315,
|
1924 |
+
"grad_norm": 0.007647163700312376,
|
1925 |
+
"learning_rate": 1.7978848413631022e-06,
|
1926 |
+
"loss": 0.0004,
|
1927 |
+
"step": 548
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.6444053895723492,
|
1931 |
+
"grad_norm": 0.012163680978119373,
|
1932 |
+
"learning_rate": 1.7861339600470036e-06,
|
1933 |
+
"loss": 0.0002,
|
1934 |
+
"step": 550
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.6467486818980668,
|
1938 |
+
"grad_norm": 0.09023822844028473,
|
1939 |
+
"learning_rate": 1.7743830787309049e-06,
|
1940 |
+
"loss": 0.0009,
|
1941 |
+
"step": 552
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.6490919742237844,
|
1945 |
+
"grad_norm": 0.006924999412149191,
|
1946 |
+
"learning_rate": 1.762632197414806e-06,
|
1947 |
+
"loss": 0.0001,
|
1948 |
+
"step": 554
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.651435266549502,
|
1952 |
+
"grad_norm": 0.0006185275269672275,
|
1953 |
+
"learning_rate": 1.7508813160987075e-06,
|
1954 |
+
"loss": 0.0001,
|
1955 |
+
"step": 556
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.6537785588752196,
|
1959 |
+
"grad_norm": 0.011605402454733849,
|
1960 |
+
"learning_rate": 1.7391304347826088e-06,
|
1961 |
+
"loss": 0.0006,
|
1962 |
+
"step": 558
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.6561218512009374,
|
1966 |
+
"grad_norm": 0.024394473060965538,
|
1967 |
+
"learning_rate": 1.7273795534665102e-06,
|
1968 |
+
"loss": 0.0001,
|
1969 |
+
"step": 560
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.658465143526655,
|
1973 |
+
"grad_norm": 0.023466341197490692,
|
1974 |
+
"learning_rate": 1.7156286721504114e-06,
|
1975 |
+
"loss": 0.0002,
|
1976 |
+
"step": 562
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.6608084358523726,
|
1980 |
+
"grad_norm": 0.010153519921004772,
|
1981 |
+
"learning_rate": 1.7038777908343126e-06,
|
1982 |
+
"loss": 0.0004,
|
1983 |
+
"step": 564
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.6631517281780902,
|
1987 |
+
"grad_norm": 0.43800845742225647,
|
1988 |
+
"learning_rate": 1.692126909518214e-06,
|
1989 |
+
"loss": 0.0012,
|
1990 |
+
"step": 566
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.6654950205038078,
|
1994 |
+
"grad_norm": 0.008404972031712532,
|
1995 |
+
"learning_rate": 1.6803760282021153e-06,
|
1996 |
+
"loss": 0.0001,
|
1997 |
+
"step": 568
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.6678383128295254,
|
2001 |
+
"grad_norm": 0.10615257918834686,
|
2002 |
+
"learning_rate": 1.6686251468860165e-06,
|
2003 |
+
"loss": 0.0005,
|
2004 |
+
"step": 570
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.6701816051552432,
|
2008 |
+
"grad_norm": 0.019307592883706093,
|
2009 |
+
"learning_rate": 1.656874265569918e-06,
|
2010 |
+
"loss": 0.0003,
|
2011 |
+
"step": 572
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.6725248974809608,
|
2015 |
+
"grad_norm": 0.012227280996739864,
|
2016 |
+
"learning_rate": 1.6451233842538192e-06,
|
2017 |
+
"loss": 0.0002,
|
2018 |
+
"step": 574
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.6748681898066784,
|
2022 |
+
"grad_norm": 0.002821948379278183,
|
2023 |
+
"learning_rate": 1.6333725029377204e-06,
|
2024 |
+
"loss": 0.0,
|
2025 |
+
"step": 576
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.677211482132396,
|
2029 |
+
"grad_norm": 0.010473825968801975,
|
2030 |
+
"learning_rate": 1.6216216216216219e-06,
|
2031 |
+
"loss": 0.0003,
|
2032 |
+
"step": 578
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.6795547744581136,
|
2036 |
+
"grad_norm": 0.014046385884284973,
|
2037 |
+
"learning_rate": 1.609870740305523e-06,
|
2038 |
+
"loss": 0.0236,
|
2039 |
+
"step": 580
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.6818980667838312,
|
2043 |
+
"grad_norm": 0.0017795696621760726,
|
2044 |
+
"learning_rate": 1.5981198589894243e-06,
|
2045 |
+
"loss": 0.0001,
|
2046 |
+
"step": 582
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.6842413591095489,
|
2050 |
+
"grad_norm": 0.0006959863239899278,
|
2051 |
+
"learning_rate": 1.5863689776733257e-06,
|
2052 |
+
"loss": 0.0002,
|
2053 |
+
"step": 584
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.6865846514352666,
|
2057 |
+
"grad_norm": 0.019652947783470154,
|
2058 |
+
"learning_rate": 1.574618096357227e-06,
|
2059 |
+
"loss": 0.0003,
|
2060 |
+
"step": 586
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.6889279437609842,
|
2064 |
+
"grad_norm": 0.002340570092201233,
|
2065 |
+
"learning_rate": 1.5628672150411282e-06,
|
2066 |
+
"loss": 0.0,
|
2067 |
+
"step": 588
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.6912712360867018,
|
2071 |
+
"grad_norm": 0.011190817691385746,
|
2072 |
+
"learning_rate": 1.5511163337250296e-06,
|
2073 |
+
"loss": 0.0002,
|
2074 |
+
"step": 590
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.6936145284124194,
|
2078 |
+
"grad_norm": 0.001152676297351718,
|
2079 |
+
"learning_rate": 1.5393654524089308e-06,
|
2080 |
+
"loss": 0.0001,
|
2081 |
+
"step": 592
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.6959578207381371,
|
2085 |
+
"grad_norm": 0.003393592080101371,
|
2086 |
+
"learning_rate": 1.5276145710928319e-06,
|
2087 |
+
"loss": 0.0001,
|
2088 |
+
"step": 594
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.6983011130638547,
|
2092 |
+
"grad_norm": 0.007921353913843632,
|
2093 |
+
"learning_rate": 1.5158636897767335e-06,
|
2094 |
+
"loss": 0.0001,
|
2095 |
+
"step": 596
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.7006444053895724,
|
2099 |
+
"grad_norm": 0.1039208471775055,
|
2100 |
+
"learning_rate": 1.5041128084606345e-06,
|
2101 |
+
"loss": 0.0002,
|
2102 |
+
"step": 598
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.70298769771529,
|
2106 |
+
"grad_norm": 0.0011576958931982517,
|
2107 |
+
"learning_rate": 1.4923619271445362e-06,
|
2108 |
+
"loss": 0.0001,
|
2109 |
+
"step": 600
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.7053309900410076,
|
2113 |
+
"grad_norm": 0.06407307088375092,
|
2114 |
+
"learning_rate": 1.4806110458284372e-06,
|
2115 |
+
"loss": 0.0003,
|
2116 |
+
"step": 602
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.7076742823667252,
|
2120 |
+
"grad_norm": 0.012639104388654232,
|
2121 |
+
"learning_rate": 1.4688601645123384e-06,
|
2122 |
+
"loss": 0.0002,
|
2123 |
+
"step": 604
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.7100175746924429,
|
2127 |
+
"grad_norm": 0.0019591290038079023,
|
2128 |
+
"learning_rate": 1.45710928319624e-06,
|
2129 |
+
"loss": 0.0068,
|
2130 |
+
"step": 606
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.7123608670181605,
|
2134 |
+
"grad_norm": 0.0008327167597599328,
|
2135 |
+
"learning_rate": 1.445358401880141e-06,
|
2136 |
+
"loss": 0.0001,
|
2137 |
+
"step": 608
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.7147041593438781,
|
2141 |
+
"grad_norm": 0.0013139324728399515,
|
2142 |
+
"learning_rate": 1.4336075205640423e-06,
|
2143 |
+
"loss": 0.0,
|
2144 |
+
"step": 610
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.7170474516695958,
|
2148 |
+
"grad_norm": 0.00803992711007595,
|
2149 |
+
"learning_rate": 1.4218566392479437e-06,
|
2150 |
+
"loss": 0.0002,
|
2151 |
+
"step": 612
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.7193907439953134,
|
2155 |
+
"grad_norm": 0.011399227194488049,
|
2156 |
+
"learning_rate": 1.410105757931845e-06,
|
2157 |
+
"loss": 0.0002,
|
2158 |
+
"step": 614
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.7217340363210311,
|
2162 |
+
"grad_norm": 0.007171169854700565,
|
2163 |
+
"learning_rate": 1.3983548766157462e-06,
|
2164 |
+
"loss": 0.0002,
|
2165 |
+
"step": 616
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.7240773286467487,
|
2169 |
+
"grad_norm": 0.7272996306419373,
|
2170 |
+
"learning_rate": 1.3866039952996476e-06,
|
2171 |
+
"loss": 0.0028,
|
2172 |
+
"step": 618
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.7264206209724663,
|
2176 |
+
"grad_norm": 0.0037387118209153414,
|
2177 |
+
"learning_rate": 1.3748531139835488e-06,
|
2178 |
+
"loss": 0.0001,
|
2179 |
+
"step": 620
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.7287639132981839,
|
2183 |
+
"grad_norm": 0.015048849396407604,
|
2184 |
+
"learning_rate": 1.36310223266745e-06,
|
2185 |
+
"loss": 0.0002,
|
2186 |
+
"step": 622
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.7311072056239016,
|
2190 |
+
"grad_norm": 0.0023705060593783855,
|
2191 |
+
"learning_rate": 1.3513513513513515e-06,
|
2192 |
+
"loss": 0.0001,
|
2193 |
+
"step": 624
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.7334504979496193,
|
2197 |
+
"grad_norm": 0.03966263309121132,
|
2198 |
+
"learning_rate": 1.3396004700352527e-06,
|
2199 |
+
"loss": 0.0003,
|
2200 |
+
"step": 626
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.7357937902753369,
|
2204 |
+
"grad_norm": 0.0033043306320905685,
|
2205 |
+
"learning_rate": 1.327849588719154e-06,
|
2206 |
+
"loss": 0.0004,
|
2207 |
+
"step": 628
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.7381370826010545,
|
2211 |
+
"grad_norm": 0.35459718108177185,
|
2212 |
+
"learning_rate": 1.3160987074030554e-06,
|
2213 |
+
"loss": 0.0034,
|
2214 |
+
"step": 630
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.7404803749267721,
|
2218 |
+
"grad_norm": 0.016441915184259415,
|
2219 |
+
"learning_rate": 1.3043478260869566e-06,
|
2220 |
+
"loss": 0.0002,
|
2221 |
+
"step": 632
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.7428236672524897,
|
2225 |
+
"grad_norm": 0.0045352657325565815,
|
2226 |
+
"learning_rate": 1.2925969447708578e-06,
|
2227 |
+
"loss": 0.0002,
|
2228 |
+
"step": 634
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.7451669595782073,
|
2232 |
+
"grad_norm": 0.06311573088169098,
|
2233 |
+
"learning_rate": 1.2808460634547593e-06,
|
2234 |
+
"loss": 0.0005,
|
2235 |
+
"step": 636
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.7475102519039251,
|
2239 |
+
"grad_norm": 0.11154340207576752,
|
2240 |
+
"learning_rate": 1.2690951821386605e-06,
|
2241 |
+
"loss": 0.0009,
|
2242 |
+
"step": 638
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.7498535442296427,
|
2246 |
+
"grad_norm": 0.01816423609852791,
|
2247 |
+
"learning_rate": 1.257344300822562e-06,
|
2248 |
+
"loss": 0.0006,
|
2249 |
+
"step": 640
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.7521968365553603,
|
2253 |
+
"grad_norm": 0.027273530140519142,
|
2254 |
+
"learning_rate": 1.2455934195064632e-06,
|
2255 |
+
"loss": 0.0005,
|
2256 |
+
"step": 642
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.7545401288810779,
|
2260 |
+
"grad_norm": 0.006555743515491486,
|
2261 |
+
"learning_rate": 1.2338425381903644e-06,
|
2262 |
+
"loss": 0.0003,
|
2263 |
+
"step": 644
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.7568834212067955,
|
2267 |
+
"grad_norm": 0.0030812753830105066,
|
2268 |
+
"learning_rate": 1.2220916568742656e-06,
|
2269 |
+
"loss": 0.0279,
|
2270 |
+
"step": 646
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.7592267135325131,
|
2274 |
+
"grad_norm": 0.01702543906867504,
|
2275 |
+
"learning_rate": 1.210340775558167e-06,
|
2276 |
+
"loss": 0.0001,
|
2277 |
+
"step": 648
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.7615700058582309,
|
2281 |
+
"grad_norm": 0.02607725001871586,
|
2282 |
+
"learning_rate": 1.1985898942420683e-06,
|
2283 |
+
"loss": 0.0001,
|
2284 |
+
"step": 650
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.7639132981839485,
|
2288 |
+
"grad_norm": 0.006388965994119644,
|
2289 |
+
"learning_rate": 1.1868390129259695e-06,
|
2290 |
+
"loss": 0.0001,
|
2291 |
+
"step": 652
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.7662565905096661,
|
2295 |
+
"grad_norm": 0.008253968320786953,
|
2296 |
+
"learning_rate": 1.175088131609871e-06,
|
2297 |
+
"loss": 0.0001,
|
2298 |
+
"step": 654
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.7685998828353837,
|
2302 |
+
"grad_norm": 0.004699599463492632,
|
2303 |
+
"learning_rate": 1.1633372502937722e-06,
|
2304 |
+
"loss": 0.0002,
|
2305 |
+
"step": 656
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.7709431751611013,
|
2309 |
+
"grad_norm": 0.0012458263663575053,
|
2310 |
+
"learning_rate": 1.1515863689776734e-06,
|
2311 |
+
"loss": 0.0122,
|
2312 |
+
"step": 658
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.773286467486819,
|
2316 |
+
"grad_norm": 0.02383268252015114,
|
2317 |
+
"learning_rate": 1.1398354876615746e-06,
|
2318 |
+
"loss": 0.0003,
|
2319 |
+
"step": 660
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.7756297598125366,
|
2323 |
+
"grad_norm": 0.015058089047670364,
|
2324 |
+
"learning_rate": 1.128084606345476e-06,
|
2325 |
+
"loss": 0.0001,
|
2326 |
+
"step": 662
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.7779730521382543,
|
2330 |
+
"grad_norm": 0.01569475792348385,
|
2331 |
+
"learning_rate": 1.1163337250293773e-06,
|
2332 |
+
"loss": 0.0003,
|
2333 |
+
"step": 664
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.7803163444639719,
|
2337 |
+
"grad_norm": 0.04253750294446945,
|
2338 |
+
"learning_rate": 1.1045828437132785e-06,
|
2339 |
+
"loss": 0.0002,
|
2340 |
+
"step": 666
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.7826596367896895,
|
2344 |
+
"grad_norm": 0.015156907960772514,
|
2345 |
+
"learning_rate": 1.09283196239718e-06,
|
2346 |
+
"loss": 0.0002,
|
2347 |
+
"step": 668
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.7850029291154071,
|
2351 |
+
"grad_norm": 0.03742622211575508,
|
2352 |
+
"learning_rate": 1.0810810810810812e-06,
|
2353 |
+
"loss": 0.0005,
|
2354 |
+
"step": 670
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.7873462214411248,
|
2358 |
+
"grad_norm": 0.027262985706329346,
|
2359 |
+
"learning_rate": 1.0693301997649824e-06,
|
2360 |
+
"loss": 0.0002,
|
2361 |
+
"step": 672
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.7896895137668424,
|
2365 |
+
"grad_norm": 0.007641313597559929,
|
2366 |
+
"learning_rate": 1.0575793184488838e-06,
|
2367 |
+
"loss": 0.0002,
|
2368 |
+
"step": 674
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.79203280609256,
|
2372 |
+
"grad_norm": 0.04441560059785843,
|
2373 |
+
"learning_rate": 1.045828437132785e-06,
|
2374 |
+
"loss": 0.0005,
|
2375 |
+
"step": 676
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.7943760984182777,
|
2379 |
+
"grad_norm": 0.020478103309869766,
|
2380 |
+
"learning_rate": 1.0340775558166863e-06,
|
2381 |
+
"loss": 0.0002,
|
2382 |
+
"step": 678
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.7967193907439953,
|
2386 |
+
"grad_norm": 0.10936477035284042,
|
2387 |
+
"learning_rate": 1.0223266745005877e-06,
|
2388 |
+
"loss": 0.001,
|
2389 |
+
"step": 680
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.799062683069713,
|
2393 |
+
"grad_norm": 0.01284460723400116,
|
2394 |
+
"learning_rate": 1.010575793184489e-06,
|
2395 |
+
"loss": 0.0015,
|
2396 |
+
"step": 682
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.8014059753954306,
|
2400 |
+
"grad_norm": 0.003440434578806162,
|
2401 |
+
"learning_rate": 9.988249118683902e-07,
|
2402 |
+
"loss": 0.0,
|
2403 |
+
"step": 684
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.8037492677211482,
|
2407 |
+
"grad_norm": 0.013081365264952183,
|
2408 |
+
"learning_rate": 9.870740305522914e-07,
|
2409 |
+
"loss": 0.0009,
|
2410 |
+
"step": 686
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.8060925600468658,
|
2414 |
+
"grad_norm": 0.013380183838307858,
|
2415 |
+
"learning_rate": 9.753231492361928e-07,
|
2416 |
+
"loss": 0.0002,
|
2417 |
+
"step": 688
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.8084358523725835,
|
2421 |
+
"grad_norm": 0.03771582618355751,
|
2422 |
+
"learning_rate": 9.63572267920094e-07,
|
2423 |
+
"loss": 0.0003,
|
2424 |
+
"step": 690
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.8107791446983011,
|
2428 |
+
"grad_norm": 0.0009556732256896794,
|
2429 |
+
"learning_rate": 9.518213866039954e-07,
|
2430 |
+
"loss": 0.0005,
|
2431 |
+
"step": 692
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.8131224370240188,
|
2435 |
+
"grad_norm": 0.0019481348572298884,
|
2436 |
+
"learning_rate": 9.400705052878967e-07,
|
2437 |
+
"loss": 0.0001,
|
2438 |
+
"step": 694
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.8154657293497364,
|
2442 |
+
"grad_norm": 0.0021866948809474707,
|
2443 |
+
"learning_rate": 9.28319623971798e-07,
|
2444 |
+
"loss": 0.0002,
|
2445 |
+
"step": 696
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.817809021675454,
|
2449 |
+
"grad_norm": 0.007546517997980118,
|
2450 |
+
"learning_rate": 9.165687426556992e-07,
|
2451 |
+
"loss": 0.0007,
|
2452 |
+
"step": 698
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.8201523140011716,
|
2456 |
+
"grad_norm": 2.074432611465454,
|
2457 |
+
"learning_rate": 9.048178613396005e-07,
|
2458 |
+
"loss": 0.0251,
|
2459 |
+
"step": 700
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.8224956063268892,
|
2463 |
+
"grad_norm": 0.003374068532139063,
|
2464 |
+
"learning_rate": 8.930669800235018e-07,
|
2465 |
+
"loss": 0.0001,
|
2466 |
+
"step": 702
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.824838898652607,
|
2470 |
+
"grad_norm": 0.010109562426805496,
|
2471 |
+
"learning_rate": 8.81316098707403e-07,
|
2472 |
+
"loss": 0.0006,
|
2473 |
+
"step": 704
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.8271821909783246,
|
2477 |
+
"grad_norm": 0.017352379858493805,
|
2478 |
+
"learning_rate": 8.695652173913044e-07,
|
2479 |
+
"loss": 0.0001,
|
2480 |
+
"step": 706
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.8295254833040422,
|
2484 |
+
"grad_norm": 0.016872087493538857,
|
2485 |
+
"learning_rate": 8.578143360752057e-07,
|
2486 |
+
"loss": 0.0002,
|
2487 |
+
"step": 708
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.8318687756297598,
|
2491 |
+
"grad_norm": 0.041937246918678284,
|
2492 |
+
"learning_rate": 8.46063454759107e-07,
|
2493 |
+
"loss": 0.0228,
|
2494 |
+
"step": 710
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.8342120679554774,
|
2498 |
+
"grad_norm": 0.02908233553171158,
|
2499 |
+
"learning_rate": 8.343125734430083e-07,
|
2500 |
+
"loss": 0.0002,
|
2501 |
+
"step": 712
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.836555360281195,
|
2505 |
+
"grad_norm": 0.0012463816674426198,
|
2506 |
+
"learning_rate": 8.225616921269096e-07,
|
2507 |
+
"loss": 0.0004,
|
2508 |
+
"step": 714
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.8388986526069128,
|
2512 |
+
"grad_norm": 0.04300675913691521,
|
2513 |
+
"learning_rate": 8.108108108108109e-07,
|
2514 |
+
"loss": 0.0006,
|
2515 |
+
"step": 716
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.8412419449326304,
|
2519 |
+
"grad_norm": 2.7622828483581543,
|
2520 |
+
"learning_rate": 7.990599294947122e-07,
|
2521 |
+
"loss": 0.149,
|
2522 |
+
"step": 718
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.843585237258348,
|
2526 |
+
"grad_norm": 0.010049765929579735,
|
2527 |
+
"learning_rate": 7.873090481786135e-07,
|
2528 |
+
"loss": 0.0002,
|
2529 |
+
"step": 720
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.8459285295840656,
|
2533 |
+
"grad_norm": 0.011876920238137245,
|
2534 |
+
"learning_rate": 7.755581668625148e-07,
|
2535 |
+
"loss": 0.0001,
|
2536 |
+
"step": 722
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.8482718219097832,
|
2540 |
+
"grad_norm": 0.014826681464910507,
|
2541 |
+
"learning_rate": 7.638072855464159e-07,
|
2542 |
+
"loss": 0.0003,
|
2543 |
+
"step": 724
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.8506151142355008,
|
2547 |
+
"grad_norm": 0.16368882358074188,
|
2548 |
+
"learning_rate": 7.520564042303173e-07,
|
2549 |
+
"loss": 0.0013,
|
2550 |
+
"step": 726
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.8529584065612185,
|
2554 |
+
"grad_norm": 0.02603282406926155,
|
2555 |
+
"learning_rate": 7.403055229142186e-07,
|
2556 |
+
"loss": 0.0004,
|
2557 |
+
"step": 728
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.8553016988869362,
|
2561 |
+
"grad_norm": 0.7740702629089355,
|
2562 |
+
"learning_rate": 7.2855464159812e-07,
|
2563 |
+
"loss": 0.0043,
|
2564 |
+
"step": 730
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.8576449912126538,
|
2568 |
+
"grad_norm": 0.010226438753306866,
|
2569 |
+
"learning_rate": 7.168037602820211e-07,
|
2570 |
+
"loss": 0.0002,
|
2571 |
+
"step": 732
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.8599882835383714,
|
2575 |
+
"grad_norm": 0.02008165791630745,
|
2576 |
+
"learning_rate": 7.050528789659225e-07,
|
2577 |
+
"loss": 0.0002,
|
2578 |
+
"step": 734
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.862331575864089,
|
2582 |
+
"grad_norm": 0.09208586066961288,
|
2583 |
+
"learning_rate": 6.933019976498238e-07,
|
2584 |
+
"loss": 0.0008,
|
2585 |
+
"step": 736
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.8646748681898067,
|
2589 |
+
"grad_norm": 0.01933148130774498,
|
2590 |
+
"learning_rate": 6.81551116333725e-07,
|
2591 |
+
"loss": 0.0011,
|
2592 |
+
"step": 738
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.8670181605155243,
|
2596 |
+
"grad_norm": 0.04433580860495567,
|
2597 |
+
"learning_rate": 6.698002350176264e-07,
|
2598 |
+
"loss": 0.0003,
|
2599 |
+
"step": 740
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.869361452841242,
|
2603 |
+
"grad_norm": 0.01631711982190609,
|
2604 |
+
"learning_rate": 6.580493537015277e-07,
|
2605 |
+
"loss": 0.0003,
|
2606 |
+
"step": 742
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.8717047451669596,
|
2610 |
+
"grad_norm": 0.042307399213314056,
|
2611 |
+
"learning_rate": 6.462984723854289e-07,
|
2612 |
+
"loss": 0.0004,
|
2613 |
+
"step": 744
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.8740480374926772,
|
2617 |
+
"grad_norm": 0.22414757311344147,
|
2618 |
+
"learning_rate": 6.345475910693303e-07,
|
2619 |
+
"loss": 0.0018,
|
2620 |
+
"step": 746
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.8763913298183948,
|
2624 |
+
"grad_norm": 0.17513447999954224,
|
2625 |
+
"learning_rate": 6.227967097532316e-07,
|
2626 |
+
"loss": 0.0015,
|
2627 |
+
"step": 748
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.8787346221441125,
|
2631 |
+
"grad_norm": 0.3218580186367035,
|
2632 |
+
"learning_rate": 6.110458284371328e-07,
|
2633 |
+
"loss": 0.0029,
|
2634 |
+
"step": 750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.8810779144698301,
|
2638 |
+
"grad_norm": 0.026706017553806305,
|
2639 |
+
"learning_rate": 5.992949471210341e-07,
|
2640 |
+
"loss": 0.0004,
|
2641 |
+
"step": 752
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.8834212067955477,
|
2645 |
+
"grad_norm": 0.4114263951778412,
|
2646 |
+
"learning_rate": 5.875440658049355e-07,
|
2647 |
+
"loss": 0.0035,
|
2648 |
+
"step": 754
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.8857644991212654,
|
2652 |
+
"grad_norm": 0.25009235739707947,
|
2653 |
+
"learning_rate": 5.757931844888367e-07,
|
2654 |
+
"loss": 0.0016,
|
2655 |
+
"step": 756
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.888107791446983,
|
2659 |
+
"grad_norm": 1.2960833311080933,
|
2660 |
+
"learning_rate": 5.64042303172738e-07,
|
2661 |
+
"loss": 0.0059,
|
2662 |
+
"step": 758
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.8904510837727007,
|
2666 |
+
"grad_norm": 0.28417083621025085,
|
2667 |
+
"learning_rate": 5.522914218566393e-07,
|
2668 |
+
"loss": 0.0059,
|
2669 |
+
"step": 760
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.8927943760984183,
|
2673 |
+
"grad_norm": 0.2292051613330841,
|
2674 |
+
"learning_rate": 5.405405405405406e-07,
|
2675 |
+
"loss": 0.0015,
|
2676 |
+
"step": 762
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.8951376684241359,
|
2680 |
+
"grad_norm": 0.012189504690468311,
|
2681 |
+
"learning_rate": 5.287896592244419e-07,
|
2682 |
+
"loss": 0.0007,
|
2683 |
+
"step": 764
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.8974809607498535,
|
2687 |
+
"grad_norm": 0.09458251297473907,
|
2688 |
+
"learning_rate": 5.170387779083431e-07,
|
2689 |
+
"loss": 0.0004,
|
2690 |
+
"step": 766
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.8998242530755711,
|
2694 |
+
"grad_norm": 0.027070222422480583,
|
2695 |
+
"learning_rate": 5.052878965922445e-07,
|
2696 |
+
"loss": 0.0012,
|
2697 |
+
"step": 768
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.9021675454012889,
|
2701 |
+
"grad_norm": 0.047401878982782364,
|
2702 |
+
"learning_rate": 4.935370152761457e-07,
|
2703 |
+
"loss": 0.0003,
|
2704 |
+
"step": 770
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.9045108377270065,
|
2708 |
+
"grad_norm": 0.06239737570285797,
|
2709 |
+
"learning_rate": 4.81786133960047e-07,
|
2710 |
+
"loss": 0.0012,
|
2711 |
+
"step": 772
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.9068541300527241,
|
2715 |
+
"grad_norm": 2.6842846870422363,
|
2716 |
+
"learning_rate": 4.7003525264394836e-07,
|
2717 |
+
"loss": 0.1103,
|
2718 |
+
"step": 774
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.9091974223784417,
|
2722 |
+
"grad_norm": 0.057395774871110916,
|
2723 |
+
"learning_rate": 4.582843713278496e-07,
|
2724 |
+
"loss": 0.0004,
|
2725 |
+
"step": 776
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.9115407147041593,
|
2729 |
+
"grad_norm": 0.16248440742492676,
|
2730 |
+
"learning_rate": 4.465334900117509e-07,
|
2731 |
+
"loss": 0.0018,
|
2732 |
+
"step": 778
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.9138840070298769,
|
2736 |
+
"grad_norm": 0.11067284643650055,
|
2737 |
+
"learning_rate": 4.347826086956522e-07,
|
2738 |
+
"loss": 0.0011,
|
2739 |
+
"step": 780
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.9162272993555947,
|
2743 |
+
"grad_norm": 0.07208680361509323,
|
2744 |
+
"learning_rate": 4.230317273795535e-07,
|
2745 |
+
"loss": 0.0011,
|
2746 |
+
"step": 782
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.9185705916813123,
|
2750 |
+
"grad_norm": 0.4830150604248047,
|
2751 |
+
"learning_rate": 4.112808460634548e-07,
|
2752 |
+
"loss": 0.0022,
|
2753 |
+
"step": 784
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.9209138840070299,
|
2757 |
+
"grad_norm": 0.01794450171291828,
|
2758 |
+
"learning_rate": 3.995299647473561e-07,
|
2759 |
+
"loss": 0.0011,
|
2760 |
+
"step": 786
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.9232571763327475,
|
2764 |
+
"grad_norm": 3.0485081672668457,
|
2765 |
+
"learning_rate": 3.877790834312574e-07,
|
2766 |
+
"loss": 0.0508,
|
2767 |
+
"step": 788
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.9256004686584651,
|
2771 |
+
"grad_norm": 3.130112648010254,
|
2772 |
+
"learning_rate": 3.7602820211515863e-07,
|
2773 |
+
"loss": 0.0194,
|
2774 |
+
"step": 790
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.9279437609841827,
|
2778 |
+
"grad_norm": 3.5992815494537354,
|
2779 |
+
"learning_rate": 3.6427732079906e-07,
|
2780 |
+
"loss": 0.1036,
|
2781 |
+
"step": 792
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.9302870533099004,
|
2785 |
+
"grad_norm": 0.0751647800207138,
|
2786 |
+
"learning_rate": 3.5252643948296124e-07,
|
2787 |
+
"loss": 0.0003,
|
2788 |
+
"step": 794
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.9326303456356181,
|
2792 |
+
"grad_norm": 0.03622612729668617,
|
2793 |
+
"learning_rate": 3.407755581668625e-07,
|
2794 |
+
"loss": 0.0011,
|
2795 |
+
"step": 796
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.9349736379613357,
|
2799 |
+
"grad_norm": 0.22365981340408325,
|
2800 |
+
"learning_rate": 3.2902467685076385e-07,
|
2801 |
+
"loss": 0.0028,
|
2802 |
+
"step": 798
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.9373169302870533,
|
2806 |
+
"grad_norm": 0.04666091129183769,
|
2807 |
+
"learning_rate": 3.172737955346651e-07,
|
2808 |
+
"loss": 0.0041,
|
2809 |
+
"step": 800
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.9396602226127709,
|
2813 |
+
"grad_norm": 5.363467693328857,
|
2814 |
+
"learning_rate": 3.055229142185664e-07,
|
2815 |
+
"loss": 0.2217,
|
2816 |
+
"step": 802
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.9420035149384886,
|
2820 |
+
"grad_norm": 0.06753694266080856,
|
2821 |
+
"learning_rate": 2.9377203290246774e-07,
|
2822 |
+
"loss": 0.0026,
|
2823 |
+
"step": 804
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.9443468072642062,
|
2827 |
+
"grad_norm": 2.554419994354248,
|
2828 |
+
"learning_rate": 2.82021151586369e-07,
|
2829 |
+
"loss": 0.0791,
|
2830 |
+
"step": 806
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.9466900995899239,
|
2834 |
+
"grad_norm": 0.14563411474227905,
|
2835 |
+
"learning_rate": 2.702702702702703e-07,
|
2836 |
+
"loss": 0.0208,
|
2837 |
+
"step": 808
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.9490333919156415,
|
2841 |
+
"grad_norm": 2.30971360206604,
|
2842 |
+
"learning_rate": 2.5851938895417157e-07,
|
2843 |
+
"loss": 0.1119,
|
2844 |
+
"step": 810
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.9513766842413591,
|
2848 |
+
"grad_norm": 4.073694229125977,
|
2849 |
+
"learning_rate": 2.4676850763807285e-07,
|
2850 |
+
"loss": 0.1057,
|
2851 |
+
"step": 812
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.9537199765670767,
|
2855 |
+
"grad_norm": 2.3215789794921875,
|
2856 |
+
"learning_rate": 2.3501762632197418e-07,
|
2857 |
+
"loss": 0.0286,
|
2858 |
+
"step": 814
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.9560632688927944,
|
2862 |
+
"grad_norm": 0.46727773547172546,
|
2863 |
+
"learning_rate": 2.2326674500587546e-07,
|
2864 |
+
"loss": 0.0714,
|
2865 |
+
"step": 816
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.958406561218512,
|
2869 |
+
"grad_norm": 2.0026137828826904,
|
2870 |
+
"learning_rate": 2.1151586368977676e-07,
|
2871 |
+
"loss": 0.0455,
|
2872 |
+
"step": 818
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.9607498535442296,
|
2876 |
+
"grad_norm": 3.2537143230438232,
|
2877 |
+
"learning_rate": 1.9976498237367804e-07,
|
2878 |
+
"loss": 0.0765,
|
2879 |
+
"step": 820
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.9630931458699473,
|
2883 |
+
"grad_norm": 3.485633134841919,
|
2884 |
+
"learning_rate": 1.8801410105757932e-07,
|
2885 |
+
"loss": 0.0493,
|
2886 |
+
"step": 822
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.9654364381956649,
|
2890 |
+
"grad_norm": 2.769423246383667,
|
2891 |
+
"learning_rate": 1.7626321974148062e-07,
|
2892 |
+
"loss": 0.0602,
|
2893 |
+
"step": 824
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.9677797305213826,
|
2897 |
+
"grad_norm": 2.236210823059082,
|
2898 |
+
"learning_rate": 1.6451233842538192e-07,
|
2899 |
+
"loss": 0.1404,
|
2900 |
+
"step": 826
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.9701230228471002,
|
2904 |
+
"grad_norm": 0.06197360157966614,
|
2905 |
+
"learning_rate": 1.527614571092832e-07,
|
2906 |
+
"loss": 0.0472,
|
2907 |
+
"step": 828
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.9724663151728178,
|
2911 |
+
"grad_norm": 0.8206185698509216,
|
2912 |
+
"learning_rate": 1.410105757931845e-07,
|
2913 |
+
"loss": 0.0686,
|
2914 |
+
"step": 830
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.9748096074985354,
|
2918 |
+
"grad_norm": 2.434030771255493,
|
2919 |
+
"learning_rate": 1.2925969447708578e-07,
|
2920 |
+
"loss": 0.1322,
|
2921 |
+
"step": 832
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.9771528998242531,
|
2925 |
+
"grad_norm": 0.03143630549311638,
|
2926 |
+
"learning_rate": 1.1750881316098709e-07,
|
2927 |
+
"loss": 0.1134,
|
2928 |
+
"step": 834
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.9794961921499707,
|
2932 |
+
"grad_norm": 0.1770186424255371,
|
2933 |
+
"learning_rate": 1.0575793184488838e-07,
|
2934 |
+
"loss": 0.0011,
|
2935 |
+
"step": 836
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.9818394844756884,
|
2939 |
+
"grad_norm": 6.03350830078125,
|
2940 |
+
"learning_rate": 9.400705052878966e-08,
|
2941 |
+
"loss": 0.4193,
|
2942 |
+
"step": 838
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.984182776801406,
|
2946 |
+
"grad_norm": 4.842612266540527,
|
2947 |
+
"learning_rate": 8.225616921269096e-08,
|
2948 |
+
"loss": 0.0951,
|
2949 |
+
"step": 840
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.9865260691271236,
|
2953 |
+
"grad_norm": 3.111945629119873,
|
2954 |
+
"learning_rate": 7.050528789659225e-08,
|
2955 |
+
"loss": 0.1375,
|
2956 |
+
"step": 842
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.9888693614528412,
|
2960 |
+
"grad_norm": 3.4468753337860107,
|
2961 |
+
"learning_rate": 5.8754406580493544e-08,
|
2962 |
+
"loss": 0.157,
|
2963 |
+
"step": 844
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.9912126537785588,
|
2967 |
+
"grad_norm": 5.563467502593994,
|
2968 |
+
"learning_rate": 4.700352526439483e-08,
|
2969 |
+
"loss": 0.1989,
|
2970 |
+
"step": 846
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.9935559461042766,
|
2974 |
+
"grad_norm": 0.20900146663188934,
|
2975 |
+
"learning_rate": 3.5252643948296127e-08,
|
2976 |
+
"loss": 0.169,
|
2977 |
+
"step": 848
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.9958992384299942,
|
2981 |
+
"grad_norm": 2.651283025741577,
|
2982 |
+
"learning_rate": 2.3501762632197414e-08,
|
2983 |
+
"loss": 0.0203,
|
2984 |
+
"step": 850
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.9982425307557118,
|
2988 |
+
"grad_norm": 3.192451000213623,
|
2989 |
+
"learning_rate": 1.1750881316098707e-08,
|
2990 |
+
"loss": 0.0786,
|
2991 |
+
"step": 852
|
2992 |
+
}
|
2993 |
+
],
|
2994 |
+
"logging_steps": 2,
|
2995 |
+
"max_steps": 853,
|
2996 |
+
"num_input_tokens_seen": 0,
|
2997 |
+
"num_train_epochs": 1,
|
2998 |
+
"save_steps": 20000,
|
2999 |
+
"stateful_callbacks": {
|
3000 |
+
"TrainerControl": {
|
3001 |
+
"args": {
|
3002 |
+
"should_epoch_stop": false,
|
3003 |
+
"should_evaluate": false,
|
3004 |
+
"should_log": false,
|
3005 |
+
"should_save": true,
|
3006 |
+
"should_training_stop": true
|
3007 |
+
},
|
3008 |
+
"attributes": {}
|
3009 |
+
}
|
3010 |
+
},
|
3011 |
+
"total_flos": 0.0,
|
3012 |
+
"train_batch_size": 1,
|
3013 |
+
"trial_name": null,
|
3014 |
+
"trial_params": null
|
3015 |
+
}
|
checkpoint-853/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347d3fe43a026d8e0d3dc886116e49e992d313a7046135a66cde752c9308dfd5
|
3 |
+
size 6776
|
checkpoint-853/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/autodl-tmp/bge-m3_r4",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.42.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.1",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff2b3be09c7552fc58248f097a32771e376f56eb50737f93e0f41cef389d71d
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
runs/Aug22_17-17-24_autodl-container-c024408f5d-9bcd732d/events.out.tfevents.1724318254.autodl-container-c024408f5d-9bcd732d.5345.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04011eacde85360baeb929a4b75d2544f7b0d570ca1f0fed03e9b6168747a9cb
|
3 |
+
size 5560
|
runs/Aug22_17-18-40_autodl-container-c024408f5d-9bcd732d/events.out.tfevents.1724318333.autodl-container-c024408f5d-9bcd732d.6318.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14fbf8c125536ee0ff2735de382a9ec6685c0ddf465533d2cb0127204a6e3f67
|
3 |
+
size 95134
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b74659c780d49afad7a7b9799868f75cbd3014fb6c34956e85a793028d38094a
|
3 |
+
size 17098251
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347d3fe43a026d8e0d3dc886116e49e992d313a7046135a66cde752c9308dfd5
|
3 |
+
size 6776
|