|
import torch
|
|
from torch import nn
|
|
|
|
class SelfAttention(nn.Module):
|
|
def __init__(self, in_channels):
|
|
super(SelfAttention, self).__init__()
|
|
self.query = nn.Conv2d(in_channels, in_channels//8, 1)
|
|
self.key = nn.Conv2d(in_channels, in_channels//8, 1)
|
|
self.value = nn.Conv2d(in_channels, in_channels, 1)
|
|
self.gamma = nn.Parameter(torch.zeros(1))
|
|
|
|
def forward(self, x):
|
|
batch_size, C, H, W = x.size()
|
|
|
|
q = self.query(x).view(batch_size, -1, H*W).permute(0, 2, 1)
|
|
k = self.key(x).view(batch_size, -1, H*W)
|
|
v = self.value(x).view(batch_size, -1, H*W)
|
|
|
|
attention = torch.bmm(q, k)
|
|
attention = torch.softmax(attention, dim=-1)
|
|
|
|
out = torch.bmm(v, attention.permute(0, 2, 1))
|
|
out = out.view(batch_size, C, H, W)
|
|
|
|
return self.gamma * out + x
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, channels):
|
|
super(ResidualBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.bn1 = nn.BatchNorm2d(channels)
|
|
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.bn2 = nn.BatchNorm2d(channels)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.relu(self.bn1(self.conv1(x)))
|
|
out = self.bn2(self.conv2(out))
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
class aeModel(nn.Module):
|
|
def __init__(self):
|
|
super(aeModel, self).__init__()
|
|
|
|
self.encoder = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Conv2d(3, 32, 3, stride=2, padding=1),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
ResidualBlock(32)
|
|
),
|
|
nn.Sequential(
|
|
nn.Conv2d(32, 64, 3, stride=2, padding=1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(),
|
|
ResidualBlock(64)
|
|
),
|
|
nn.Sequential(
|
|
nn.Conv2d(64, 128, 3, stride=2, padding=1),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(),
|
|
ResidualBlock(128),
|
|
SelfAttention(128)
|
|
),
|
|
nn.Sequential(
|
|
nn.Conv2d(128, 256, 3, stride=2, padding=1),
|
|
nn.BatchNorm2d(256),
|
|
nn.ReLU(),
|
|
ResidualBlock(256),
|
|
SelfAttention(256)
|
|
)
|
|
])
|
|
|
|
self.decoder = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(),
|
|
ResidualBlock(128),
|
|
SelfAttention(128)
|
|
),
|
|
nn.Sequential(
|
|
nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(),
|
|
ResidualBlock(64)
|
|
),
|
|
nn.Sequential(
|
|
nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
ResidualBlock(32)
|
|
),
|
|
nn.Sequential(
|
|
nn.ConvTranspose2d(32, 3, 3, stride=2, padding=1, output_padding=1),
|
|
nn.Sigmoid()
|
|
)
|
|
])
|
|
|
|
def forward(self, x):
|
|
for encoder_block in self.encoder:
|
|
x = encoder_block(x)
|
|
|
|
for decoder_block in self.decoder:
|
|
x = decoder_block(x)
|
|
|
|
return x
|
|
|
|
def encode(self, x):
|
|
for encoder_block in self.encoder:
|
|
x = encoder_block(x)
|
|
return x
|
|
|
|
def decode(self, x):
|
|
for decoder_block in self.decoder:
|
|
x = decoder_block(x)
|
|
return x |