|
import torch
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
from model import aeModel
|
|
|
|
def load_model(model_path, device):
|
|
model = aeModel().to(device)
|
|
model.load_state_dict(torch.load(model_path, map_location=device))
|
|
model.eval()
|
|
return model
|
|
|
|
def process_single_image(image_path, model, device):
|
|
transform = transforms.Compose([
|
|
transforms.Resize((64, 64)),
|
|
transforms.ToTensor(),
|
|
])
|
|
|
|
image = Image.open(image_path).convert('RGB')
|
|
image_tensor = transform(image).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
|
encoded = model.encode(image_tensor)
|
|
reconstruction = model.decode(encoded)
|
|
|
|
print(f'Original shape: {image_tensor.shape}')
|
|
print(f'Encoded shape: {encoded.shape}')
|
|
print(f'Decoded shape: {reconstruction.shape}')
|
|
|
|
return image_tensor.squeeze(0).cpu(), reconstruction.squeeze(0).cpu()
|
|
|
|
def visualize_original_and_reconstruction(original, reconstruction):
|
|
original = torch.clamp(original, 0, 1)
|
|
reconstruction = torch.clamp(reconstruction, 0, 1)
|
|
|
|
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
|
|
|
|
axes[0].imshow(original.permute(1, 2, 0))
|
|
axes[0].set_title("Original")
|
|
axes[0].axis("off")
|
|
|
|
axes[1].imshow(reconstruction.permute(1, 2, 0))
|
|
axes[1].set_title("Decoded")
|
|
axes[1].axis("off")
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
print(f"Using device: {device}")
|
|
|
|
model_path = 'autoencoder.pth'
|
|
model = load_model(model_path, device)
|
|
|
|
image_path = r"dataset\images\proof_2.png"
|
|
|
|
original, reconstruction = process_single_image(image_path, model, device)
|
|
visualize_original_and_reconstruction(original, reconstruction) |