dondosss commited on
Commit
abf9f52
·
verified ·
1 Parent(s): 252e48f

Training complete

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2633
23
- - Precision: 0.7560
24
- - Recall: 0.8032
25
- - F1: 0.7789
26
- - Accuracy: 0.9251
27
 
28
  ## Model description
29
 
@@ -42,7 +42,7 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 2e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 64
48
  - seed: 42
@@ -55,11 +55,10 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.4805 | 0.4 | 500 | 0.4017 | 0.6644 | 0.7072 | 0.6852 | 0.8788 |
59
- | 0.3281 | 0.8 | 1000 | 0.2818 | 0.7416 | 0.7886 | 0.7644 | 0.9203 |
60
- | 0.165 | 1.2 | 1500 | 0.2653 | 0.7573 | 0.8023 | 0.7792 | 0.9244 |
61
- | 0.2539 | 1.6 | 2000 | 0.2633 | 0.7571 | 0.8040 | 0.7799 | 0.9252 |
62
- | 0.252 | 2.0 | 2500 | 0.2633 | 0.7560 | 0.8032 | 0.7789 | 0.9251 |
63
 
64
 
65
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.1538
23
+ - Precision: 0.8891
24
+ - Recall: 0.9071
25
+ - F1: 0.8980
26
+ - Accuracy: 0.9591
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
  - train_batch_size: 16
47
  - eval_batch_size: 64
48
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.088 | 0.5 | 625 | 0.2382 | 0.8027 | 0.8614 | 0.8310 | 0.9320 |
59
+ | 0.1155 | 1.0 | 1250 | 0.1831 | 0.8518 | 0.8830 | 0.8671 | 0.9474 |
60
+ | 0.1477 | 1.5 | 1875 | 0.1770 | 0.8814 | 0.9012 | 0.8912 | 0.9561 |
61
+ | 0.0629 | 2.0 | 2500 | 0.1538 | 0.8891 | 0.9071 | 0.8980 | 0.9591 |
 
62
 
63
 
64
  ### Framework versions