dominic1021's picture
Upload 13 files
21c88fa verified
raw
history blame
8.58 kB
import os
import cv2
import numpy as np
import torch
import gradio as gr
# import spaces
from glob import glob
from typing import Tuple
from PIL import Image
# from gradio_imageslider import ImageSlider
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
torch.set_float32_matmul_precision('high')
# torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
### image_proc.py
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
'Matting': 'BiRefNet-matting',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
# @spaces.GPU
def predict(images, resolution, weights_file):
assert (images is not None), 'AssertionError: images cannot be None.'
global birefnet
# Load BiRefNet with chosen weights
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
print('Using weights: {}.'.format(_weights_file))
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
try:
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
except:
resolution = (1024, 1024) if weights_file not in ['General-Lite-2K'] else (2560, 1440)
print('Invalid resolution input. Automatically changed to 1024x1024 or 2K.')
if isinstance(images, list):
# For tab_batch
save_paths = []
save_dir = 'preds-BiRefNet'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
tab_is_batch = True
else:
images = [images]
tab_is_batch = False
for idx_image, image_src in enumerate(images):
if isinstance(image_src, str):
if os.path.isfile(image_src):
image_ori = Image.open(image_src)
else:
response = requests.get(image_src)
image_data = BytesIO(response.content)
image_ori = Image.open(image_data)
else:
image_ori = Image.fromarray(image_src)
image = image_ori.convert('RGB')
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
image_proc = image_preprocessor.proc(image)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil = transforms.ToPILImage()(pred)
image_masked = refine_foreground(image, pred_pil)
image_masked.putalpha(pred_pil.resize(image.size))
torch.cuda.empty_cache()
if tab_is_batch:
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))
image_masked.save(save_file_path)
save_paths.append(save_file_path)
if tab_is_batch:
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in save_paths:
zipf.write(file, os.path.basename(file))
return save_paths, zip_file_path
else:
return (image_masked, image_ori)[0]
examples = [[_] for _ in glob('examples/*')][:]
# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'
examples_url = [
['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'],
]
for idx_example_url, example_url in enumerate(examples_url):
examples_url[idx_example_url].append('1024x1024')
descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)'
' The resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n'
' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n'
' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
tab_image = gr.Interface(
fn=predict,
inputs=[
gr.Image(label='Upload an image'),
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=gr.Image(label="BiRefNet's prediction", type="pil", format='png'),
examples=examples,
api_name="image",
description=descriptions,
)
tab_text = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Paste an image URL"),
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=gr.Image(label="BiRefNet's prediction", type="pil", format='png'),
examples=examples_url,
api_name="text",
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!',
)
tab_batch = gr.Interface(
fn=predict,
inputs=[
gr.File(label="Upload multiple images", type="filepath", file_count="multiple"),
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")],
api_name="batch",
description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!',
)
demo = gr.TabbedInterface(
[tab_image, tab_text, tab_batch],
['image', 'text', 'batch'],
title="BiRefNet demo for subject extraction (general / matting / salient / camouflaged / portrait).",
)
if __name__ == "__main__":
demo.launch(debug=True)