File size: 2,823 Bytes
feca0b9 a2e1db6 feca0b9 7463971 3cc2911 feca0b9 52989b8 5359233 7463971 5359233 0dbb893 5359233 52989b8 5359233 52989b8 5359233 52989b8 5359233 52989b8 5359233 52989b8 5359233 52989b8 5359233 52989b8 5359233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language: pt
license: cc-by-4.0
tags:
- seq2seq
- t5
- positive_perspectives
datasets:
- dominguesm/positive-reframing-ptbr-dataset
widget:
- text: "['growth', 'neutralizing']: Sempre estressado e pensando em um monte de coisas ao mesmo tempo, preciso levar uma de cada vez, sobrecarga estressada, necessidade de reclamar"
- text: "['growth', 'neutralizing', 'optimism']: Se eu não tiver um colapso mental antes do final do verão, será um milagre."
- text: "['impermanence']: Dirigindo para visitar a vovó no hospital e o meu filho que está doente."
- text: "['optimism']: Ótimo agora, como vou explicar isso para ela, ela está tão perto de mim que não posso perdê-la :'("
- text: "['growth', 'optimism']: sempre há algo que eu poderia estar fazendo. Eu geralmente escolho não fazer isso."
---
# Positive Perspectives with Portuguese Text Reframing
## Model description
This model is a [PTT5](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab) adjusted to the sentiment transfer task, where the objective is to reverse the sentiment polarity of a text without contradicting the original meaning. Positive reframing induces a complementary positive viewpoint (e.g. glass-half-full) escaping negative patterns. Based on the article [arXiv:2204.02952](https://arxiv.org/abs/2204.02952).
## How to use
The model uses one or more sentiment strategies concatenated with a sentence and will generate a sentence with the applied sentiment output. The maximum string length is 1024 tokens. Entries must be organized in the following format:
```
"['thankfulness', 'optimism']: Tenho tanta coisa para fazer antes de sair da cidade por uma semana no domingo."
```
### Available sentiment strategies:
**growth**: viewing a challenging event as an opportunity for the author to specifically grow or improve himself.
**impermanence**: Saying that bad things don't last forever, will get better soon, and/or that other people have had similar difficulties.
**neutralizing**: Replacing a negative word with a neutral word. For example, “This was a terrible day” becomes “This was a long day”.
**optimism**: Focusing on things about the situation itself, at that moment, that are good (not just predicting a better future).
**self_affirmation**: Talking about what strengths the author already has, or values he admires, such as love, courage, perseverance, etc.
**thankfulness**: Expressing gratitude or gratitude with keywords like appreciate, happy for it, grateful for, good thing, etc.
### Usage
```python
from transformers import pipeline
pipe = pipeline('summarization', "dominguesm/positive-reframing-ptbr")
text = "['thankfulness', 'optimism']: Tenho tanta coisa para fazer antes de sair da cidade por uma semana no domingo."
pipe(text, max_length=1024)
``` |