Docto Bot
Usage (HuggingFace Transformers)
pip install -U transformers
import random
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("docto/Docto-Bot")
model = AutoModelForCausalLM.from_pretrained("docto/Docto-Bot")
special_token = '<|endoftext|>'
prompt_text = 'Question: I am having fever\nAnswer:'
#prompt_text = f'Question: {userinput}\nAnswer:'
encoded_prompt = tokenizer.encode(prompt_text,
add_special_tokens = False,
return_tensors = 'pt')
output_sequences = model.generate(
input_ids = encoded_prompt,
max_length = 700,
temperature = 0.9,
top_k = 20,
top_p = 0.9,
repetition_penalty = 1,
do_sample = True,
num_return_sequences = 4
)
result = tokenizer.decode(random.choice(output_sequences))
result = result[result.index("Answer: "):result.index(special_token)]
print(result[8:])
Training Data
The Docto-Bot was trained on Medical Question/Answer dataset
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.