Transformers documentation

ViTPose

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.53.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PyTorch

ViTPose

ViTPose is a vision transformer-based model for keypoint (pose) estimation. It uses a simple, non-hierarchical ViT backbone and a lightweight decoder head. This architecture simplifies model design, takes advantage of transformer scalability, and can be adapted to different training strategies.

ViTPose++ improves on ViTPose by incorporating a mixture-of-experts (MoE) module in the backbone and using more diverse pretraining data.

drawing

You can find all ViTPose and ViTPose++ checkpoints under the ViTPose collection.

The example below demonstrates pose estimation with the VitPoseForPoseEstimation class.

import torch
import requests
import numpy as np
import supervision as sv
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation

device = "cuda" if torch.cuda.is_available() else "cpu"

url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)

# Detect humans in the image
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)

inputs = person_image_processor(images=image, return_tensors="pt").to(device)

with torch.no_grad():
    outputs = person_model(**inputs)

results = person_image_processor.post_process_object_detection(
    outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]

# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()

# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

# Detect keypoints for each person found
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-base-simple")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=device)

inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)

with torch.no_grad():
    outputs = model(**inputs)

pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]

xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()

key_points = sv.KeyPoints(
    xy=xy, confidence=scores
)

edge_annotator = sv.EdgeAnnotator(
    color=sv.Color.GREEN,
    thickness=1
)
vertex_annotator = sv.VertexAnnotator(
    color=sv.Color.RED,
    radius=2
)
annotated_frame = edge_annotator.annotate(
    scene=image.copy(),
    key_points=key_points
)
annotated_frame = vertex_annotator.annotate(
    scene=annotated_frame,
    key_points=key_points
)
annotated_frame

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses torchao to only quantize the weights to int4.

# pip install torchao
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation, TorchAoConfig

url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)

person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)

inputs = person_image_processor(images=image, return_tensors="pt").to(device)

with torch.no_grad():
    outputs = person_model(**inputs)

results = person_image_processor.post_process_object_detection(
    outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]

person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()

person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

quantization_config = TorchAoConfig("int4_weight_only", group_size=128)

image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-huge")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-huge", device_map=device, quantization_config=quantization_config)

inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)

with torch.no_grad():
    outputs = model(**inputs)

pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]

Notes

  • Use AutoProcessor to automatically prepare bounding box and image inputs.

  • ViTPose is a top-down pose estimator. It uses a object detector to detect individuals first before keypoint prediction.

  • ViTPose++ has 6 different MoE expert heads (COCO validation 0, AiC 1, MPII 2, AP-10K 3, APT-36K 4, COCO-WholeBody 5) which supports 6 different datasets. Pass a specific value corresponding to the dataset to the dataset_index to indicate which expert to use.

    from transformers import AutoProcessor, VitPoseForPoseEstimation
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
    model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)
    
    inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
    dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)
    
    with torch.no_grad():
        outputs = model(**inputs, dataset_index=dataset_index)
  • OpenCV is an alternative option for visualizing the estimated pose.

    # pip install opencv-python
    import math
    import cv2
    
    def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
        if pose_keypoint_color is not None:
            assert len(pose_keypoint_color) == len(keypoints)
        for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
            x_coord, y_coord = int(kpt[0]), int(kpt[1])
            if kpt_score > keypoint_score_threshold:
                color = tuple(int(c) for c in pose_keypoint_color[kid])
                if show_keypoint_weight:
                    cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
                    transparency = max(0, min(1, kpt_score))
                    cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
                else:
                    cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
    
    def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
        height, width, _ = image.shape
        if keypoint_edges is not None and link_colors is not None:
            assert len(link_colors) == len(keypoint_edges)
            for sk_id, sk in enumerate(keypoint_edges):
                x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
                x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
                if (
                    x1 > 0
                    and x1 < width
                    and y1 > 0
                    and y1 < height
                    and x2 > 0
                    and x2 < width
                    and y2 > 0
                    and y2 < height
                    and score1 > keypoint_score_threshold
                    and score2 > keypoint_score_threshold
                ):
                    color = tuple(int(c) for c in link_colors[sk_id])
                    if show_keypoint_weight:
                        X = (x1, x2)
                        Y = (y1, y2)
                        mean_x = np.mean(X)
                        mean_y = np.mean(Y)
                        length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
                        angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
                        polygon = cv2.ellipse2Poly(
                            (int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
                        )
                        cv2.fillConvexPoly(image, polygon, color)
                        transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
                        cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
                    else:
                        cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
    
    # Note: keypoint_edges and color palette are dataset-specific
    keypoint_edges = model.config.edges
    
    palette = np.array(
        [
            [255, 128, 0],
            [255, 153, 51],
            [255, 178, 102],
            [230, 230, 0],
            [255, 153, 255],
            [153, 204, 255],
            [255, 102, 255],
            [255, 51, 255],
            [102, 178, 255],
            [51, 153, 255],
            [255, 153, 153],
            [255, 102, 102],
            [255, 51, 51],
            [153, 255, 153],
            [102, 255, 102],
            [51, 255, 51],
            [0, 255, 0],
            [0, 0, 255],
            [255, 0, 0],
            [255, 255, 255],
        ]
    )
    
    link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
    keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]
    
    numpy_image = np.array(image)
    
    for pose_result in image_pose_result:
        scores = np.array(pose_result["scores"])
        keypoints = np.array(pose_result["keypoints"])
    
        # draw each point on image
        draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)
    
        # draw links
        draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
    
    pose_image = Image.fromarray(numpy_image)
    pose_image

Resources

Refer to resources below to learn more about using ViTPose.

  • This notebook demonstrates inference and visualization.
  • This Space demonstrates ViTPose on images and video.

VitPoseImageProcessor

class transformers.VitPoseImageProcessor

< >

( do_affine_transform: bool = True size: typing.Optional[dict[str, int]] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None **kwargs )

Parameters

  • do_affine_transform (bool, optional, defaults to True) — Whether to apply an affine transformation to the input images.
  • size (dict[str, int] optional, defaults to {"height" -- 256, "width": 192}): Resolution of the image after affine_transform is applied. Only has an effect if do_affine_transform is set to True. Can be overridden by size in the preprocess method.
  • do_rescale (bool, optional, defaults to True) — Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image. Can be overridden by rescale_factor in the preprocess method.
  • do_normalize (bool, optional, defaults to True) — Whether or not to normalize the input with mean and standard deviation.
  • image_mean (list[int], defaults to [0.485, 0.456, 0.406], optional) — The sequence of means for each channel, to be used when normalizing images.
  • image_std (list[int], defaults to [0.229, 0.224, 0.225], optional) — The sequence of standard deviations for each channel, to be used when normalizing images.

Constructs a VitPose image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] boxes: typing.Union[list[list[float]], numpy.ndarray] do_affine_transform: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None ) BatchFeature

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • boxes (list[list[list[float]]] or np.ndarray) — List or array of bounding boxes for each image. Each box should be a list of 4 floats representing the bounding box coordinates in COCO format (top_left_x, top_left_y, width, height).
  • do_affine_transform (bool, optional, defaults to self.do_affine_transform) — Whether to apply an affine transformation to the input images.
  • size (dict[str, int] optional, defaults to self.size) — Dictionary in the format {"height": h, "width": w} specifying the size of the output image after resizing.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image values between [0 - 1].
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or list[float], optional, defaults to self.image_mean) — Image mean to use if do_normalize is set to True.
  • image_std (float or list[float], optional, defaults to self.image_std) — Image standard deviation to use if do_normalize is set to True.
  • return_tensors (str or TensorType, optional, defaults to 'np') — If set, will return tensors of a particular framework. Acceptable values are:

    • 'tf': Return TensorFlow tf.constant objects.
    • 'pt': Return PyTorch torch.Tensor objects.
    • 'np': Return NumPy np.ndarray objects.
    • 'jax': Return JAX jnp.ndarray objects.

Returns

BatchFeature

A BatchFeature with the following fields:

  • pixel_values — Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width).

Preprocess an image or batch of images.

post_process_pose_estimation

< >

( outputs: VitPoseEstimatorOutput boxes: typing.Union[list[list[list[float]]], numpy.ndarray] kernel_size: int = 11 threshold: typing.Optional[float] = None target_sizes: typing.Union[transformers.utils.generic.TensorType, list[tuple]] = None ) list[list[Dict]]

Parameters

  • outputs (VitPoseEstimatorOutput) — VitPoseForPoseEstimation model outputs.
  • boxes (list[list[list[float]]] or np.ndarray) — List or array of bounding boxes for each image. Each box should be a list of 4 floats representing the bounding box coordinates in COCO format (top_left_x, top_left_y, width, height).
  • kernel_size (int, optional, defaults to 11) — Gaussian kernel size (K) for modulation.
  • threshold (float, optional, defaults to None) — Score threshold to keep object detection predictions.
  • target_sizes (torch.Tensor or list[tuple[int, int]], optional) — Tensor of shape (batch_size, 2) or list of tuples (tuple[int, int]) containing the target size (height, width) of each image in the batch. If unset, predictions will be resize with the default value.

Returns

list[list[Dict]]

A list of dictionaries, each dictionary containing the keypoints and boxes for an image in the batch as predicted by the model.

Transform the heatmaps into keypoint predictions and transform them back to the image.

VitPoseConfig

class transformers.VitPoseConfig

< >

( backbone_config: typing.Optional[transformers.configuration_utils.PretrainedConfig] = None backbone: typing.Optional[str] = None use_pretrained_backbone: bool = False use_timm_backbone: bool = False backbone_kwargs: typing.Optional[dict] = None initializer_range: float = 0.02 scale_factor: int = 4 use_simple_decoder: bool = True **kwargs )

Parameters

  • backbone_config (PretrainedConfig or dict, optional, defaults to VitPoseBackboneConfig()) — The configuration of the backbone model. Currently, only backbone_config with vitpose_backbone as model_type is supported.
  • backbone (str, optional) — Name of backbone to use when backbone_config is None. If use_pretrained_backbone is True, this will load the corresponding pretrained weights from the timm or transformers library. If use_pretrained_backbone is False, this loads the backbone’s config and uses that to initialize the backbone with random weights.
  • use_pretrained_backbone (bool, optional, defaults to False) — Whether to use pretrained weights for the backbone.
  • use_timm_backbone (bool, optional, defaults to False) — Whether to load backbone from the timm library. If False, the backbone is loaded from the transformers library.
  • backbone_kwargs (dict, optional) — Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. {'out_indices': (0, 1, 2, 3)}. Cannot be specified if backbone_config is set.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  • scale_factor (int, optional, defaults to 4) — Factor to upscale the feature maps coming from the ViT backbone.
  • use_simple_decoder (bool, optional, defaults to True) — Whether to use a VitPoseSimpleDecoder to decode the feature maps from the backbone into heatmaps. Otherwise it uses VitPoseClassicDecoder.

This is the configuration class to store the configuration of a VitPoseForPoseEstimation. It is used to instantiate a VitPose model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VitPose usyd-community/vitpose-base-simple architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import VitPoseConfig, VitPoseForPoseEstimation

>>> # Initializing a VitPose configuration
>>> configuration = VitPoseConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = VitPoseForPoseEstimation(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

VitPoseForPoseEstimation

class transformers.VitPoseForPoseEstimation

< >

( config: VitPoseConfig )

Parameters

  • config (VitPoseConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The VitPose model with a pose estimation head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: Tensor dataset_index: typing.Optional[torch.Tensor] = None flip_pairs: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.vitpose.modeling_vitpose.VitPoseEstimatorOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.Tensor of shape (batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using {image_processor_class}. See {image_processor_class}.__call__ for details ({processor_class} uses {image_processor_class} for processing images).
  • dataset_index (torch.Tensor of shape (batch_size,)) — Index to use in the Mixture-of-Experts (MoE) blocks of the backbone.

    This corresponds to the dataset index used during training, e.g. For the single dataset index 0 refers to the corresponding dataset. For the multiple datasets index 0 refers to dataset A (e.g. MPII) and index 1 refers to dataset B (e.g. CrowdPose).

  • flip_pairs (torch.tensor, optional) — Whether to mirror pairs of keypoints (for example, left ear — right ear).
  • labels (torch.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.models.vitpose.modeling_vitpose.VitPoseEstimatorOutput or tuple(torch.FloatTensor)

A transformers.models.vitpose.modeling_vitpose.VitPoseEstimatorOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (VitPoseConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Loss is not supported at this moment. See https://github.com/ViTAE-Transformer/ViTPose/tree/main/mmpose/models/losses for further detail.

  • heatmaps (torch.FloatTensor of shape (batch_size, num_keypoints, height, width)) — Heatmaps as predicted by the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size). Hidden-states (also called feature maps) of the model at the output of each stage.

  • attentions (tuple[torch.FloatTensor, ...], optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The VitPoseForPoseEstimation forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoImageProcessor, VitPoseForPoseEstimation
>>> import torch
>>> from PIL import Image
>>> import requests

>>> processor = AutoImageProcessor.from_pretrained("usyd-community/vitpose-base-simple")
>>> model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> boxes = [[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]]]
>>> inputs = processor(image, boxes=boxes, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)
>>> heatmaps = outputs.heatmaps
< > Update on GitHub