File size: 11,938 Bytes
55d9b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import argparse
import json
import os
import pickle
import random
from functools import partial

import pandas as pd
import numpy as np
import requests
import torch
import torch.distributed as dist
from tqdm import tqdm
import multiprocessing
from multiprocessing import Pool
from fragment_creator import BaseFragmentCreator, BricksFragmentCreator, Fragment
from tokenizer import SmilesTokenizer
from torch.utils.data.distributed import DistributedSampler
from rdkit import Chem
from rdkit.Chem.Scaffolds.MurckoScaffold import MurckoScaffoldSmiles
from tqdm.contrib.concurrent import process_map, thread_map
from typing import List
import swifter

DATA_CACHE_DIR = "data"


def _tokenize_smiles(
    smi: List[str],
    tokenizer: SmilesTokenizer = None,
    max_smiles_len=256,
    log_output=True,
):
    # try:
    tokens = tokenizer.encode(smi)
    if len(tokens) > max_smiles_len:
        if log_output:
            print(f"Removing to long {smi} with smiles len of {len(tokens)} ")
        return None

    return tokens

    # except Exception as e:
    #     print(e)
    #     return None


def _tokenize_scaffolds(smi: str, tokenizer=None, max_smiles_len=256, log_output=True):
    # try:

    smi = MurckoScaffoldSmiles(smi)
    tokens = tokenizer.encode(smi)
    tokens = tokens[1:-1]  # remove [SEP] and [CLS] tokens
    if len(tokens) > max_smiles_len:
        if log_output:
            print(f"Removing to long {smi} with smiles len of {len(tokens)} ")
        return None

    return tokens

    # except Exception as e:
    #     print(e)
    #     return None


def pad_batch(src, pad_idx):
    max_len = max([len(d) for d in src])
    # src = [d["src_input_ids"] for d in data]
    padded_src = np.ones([len(src), max_len]) * pad_idx

    for i, j in enumerate(src):
        padded_src[i][0 : len(j)] = j

    # try to predict the next token from the previouse tokens
    # essentially reconstructing the src sentence from the embeddings and the previous sentence
    padded_src = padded_src.T
    return padded_src


def pretokenize(
    data_file=os.path.join(
        DATA_CACHE_DIR, "FULL_combined_zinc_pubchemqc_qm9_pc9_reddb_chembl.parquet"
    ),
    tokenizer=SmilesTokenizer(),
    limit=None,
    context=["logp", "sascore", "mol_weight"],
    out_name: str = "processed_dataset",
    remove_nan_context_rows: bool = False,
):
    df = pd.read_parquet(data_file)

    if limit is not None:
        # smiles_list = df.smiles[:limit]
        df = df.sample(n=limit)  # df[:limit]
        # NOTE: Set here if necessary, but for memory efficiency not duplicating millions of smiles
        # smiles_list = df.smiles
    else:
        # shuffle the rows
        df = df.sample(frac=1.0)

    cpu_count = (
        multiprocessing.cpu_count()
    )  # min(int(multiprocessing.cpu_count() * 0.8), 8)
    print(f"Running on {cpu_count} CPUs ")

    tqdm.pandas()

    df["scaffolds"] = df["smiles"].progress_map(lambda s: None if "." in s else s)
    df["smiles"] = df["scaffolds"].copy()
    orig_len = len(df)
    if context is not None:
        if df.get("origin") is not None:
            origins = df["origin"].unique()
            origin_dics = {}
            for i, o in enumerate(origins):
                df.loc[df["origin"] == o, "origin"] = i
                origin_dics[o] = i
            df["origin"] = df["origin"].astype(float)
            with open(
                os.path.join(
                    DATA_CACHE_DIR, os.path.basename(data_file) + "_origins.json"
                ),
                "w",
            ) as f:
                json.dump(origin_dics, f)

        mask = (
            ~df["smiles"].isna()
            & (
                (~df[context].isna()).all(axis=1)
                if remove_nan_context_rows
                else np.ones(len(df["smiles"]), dtype=bool)
            )
            & ~df["scaffolds"].isna()
        )
    else:
        mask = ~df["smiles"].isna()
    error_count = np.count_nonzero(~mask)
    df = df[mask]
    # print("HELLO")
    # print("***"*10)

    # tokenizer.batch_encode_plus()

    # df["scaffolds"] = df["scaffolds"].swifter.apply(
    #     partial(_tokenize_scaffolds, tokenizer=tokenizer, log_output=False)
    # )
    # df["scaffolds"] = df["scaffolds"].swifter.apply(
    #     partial(_tokenize_scaffolds, tokenizer=tokenizer, log_output=False)
    # )
    df["tokens"] = df["smiles"].swifter.apply(
        partial(_tokenize_smiles, tokenizer=tokenizer, log_output=False)
    )
    df["scaffolds"] = df["tokens"].copy()

    mask = ~df["tokens"].isna() & ~df["scaffolds"].isna()
    df = df[mask]
    error_count += np.count_nonzero(~mask)

    # Shuffle the data
    df = df.sample(frac=1).reset_index(drop=True)
    # with Pool(cpu_count) as p:
    #     df["scaffolds"] = list(

    #             p.map(partial( _tokenize_scaffolds ,tokenizer=tokenizer, log_output=False), tqdm(df.smiles.to_numpy(),total=len(df)), chunksize=1000),

    #     )

    #     df["smiles"] = list(
    #             p.map(partial( _tokenize_smiles ,tokenizer=tokenizer, log_output=False), tqdm(df.smiles.to_numpy(),total=len(df)), chunksize=1000),
    #     )

    if context is not None:
        context_list = df[context].to_numpy()
        context_dict = {k: context_list[:, i] for i, k in enumerate(context)}
    else:
        context_dict = {}

    print(f"Error count: {error_count} / {orig_len} = {error_count/orig_len}")

    cache_path = os.path.join(os.path.dirname(__file__), ".cache")
    os.makedirs(cache_path, exist_ok=True)
    out_path = os.path.join(cache_path, f"{out_name}_{limit}.pkl")
    with open(out_path, "wb") as f:
        pickle.dump(
            {
                "tokens": df["tokens"].tolist(),
                "smiles": df["smiles"].tolist(),
                "scaf": df["scaffolds"].tolist(),
                **context_dict,
            },
            f,
        )
    print(f"Saved to {out_path}")
    print("Done.")


class PretokDataset(torch.utils.data.Dataset):
    """Loads pretokenized example from disk and returns them as PyTorch tensors."""

    def __init__(self, split, pad_token_id, dataset="processed_dataset.pkl"):
        super().__init__()
        self.split = split
        self.dataset = dataset
        self.pad_token_id = pad_token_id
        cache_path = os.path.join(os.path.dirname(__file__), ".cache")
        with open(os.path.join(cache_path, self.dataset), "rb") as f:
            self.data_dict = pickle.load(f)

        # split out 10% of the data for validation
        split_ix = int(len(self.data_dict["tokens"]) * 0.9)
        if self.split == "train":
            self.data_dict = {k: self.data_dict[k][:split_ix] for k in self.data_dict}
        elif self.split == "val":
            self.data_dict = {k: self.data_dict[k][split_ix:] for k in self.data_dict}
        else:
            raise RuntimeError(f"Could not find split for: self.split={self.split}")

    def __len__(self):
        return len(self.data_dict["tokens"])

    def __getitem__(self, idx):
        m = self.data_dict

        start = idx
        end = idx + 1

        # calling .astype will copy the data into a new numpy array, now in RAM
        padded_tokens = pad_batch(m["tokens"][start:end], self.pad_token_id)
        chunk = torch.from_numpy((padded_tokens).astype(np.int64))

        padded_scaffolds = torch.from_numpy(
            pad_batch(m["scaf"][start:end], self.pad_token_id).astype(np.int64)
        )

        item = {
            "seq": chunk,
            "scaf": padded_scaffolds,
            "smiles": m["smiles"][start:end],
            **{
                k: torch.tensor(m[k][start:end], dtype=torch.float32)
                for k in m
                if k != "scaf" and k != "tokens" and k != "smiles"
            },
        }

        return item


def padding_collate_fn(
    data, tokenizer: SmilesTokenizer, fragment_creator: BaseFragmentCreator
):
    # data = list of dicts
    pad_idx = tokenizer.pad_token_id

    src = [d["seq"] for d in data]

    max_len = max([len(d) for d in src])
    padded_src = np.ones([len(src), max_len]) * pad_idx
    for i, j in enumerate(src):
        padded_src[i][0 : len(j)] = j.ravel()

    if fragment_creator is None:
        smiles_context = [d["scaf"] for d in data]
    else:
        # Remove start and end token after tokenization with [1:-1  ]
        smiles_context = []
        for d in data:
            s = d["smiles"][0]
            tokens = d["seq"]
            frag = fragment_creator.create_fragment(Fragment(smiles=s, tokens=tokens))
            if frag.tokens is not None:
                smiles_context.append(frag.tokens)
            else:
                smiles_context.append(
                    torch.tensor(
                        tokenizer.encode(frag.smiles)[1:-1],
                        dtype=torch.long,
                        device=tokens.device,
                    )
                )

    max_len_ctx = max([len(d) for d in smiles_context])
    padded_smiles_context = np.ones([len(smiles_context), max_len_ctx]) * pad_idx
    for i, j in enumerate(smiles_context):
        padded_smiles_context[i][0 : len(j)] = j.ravel()
    # try to predict the next token from the previouse tokens
    # essentially reconstructing the src sentence from the embeddings and the previous sentence
    padded_src = padded_src.T

    original_context_keys = [
        k for k in data[0].keys() if k != "seq" and k != "scaf" and k != "smiles"
    ]
    context_out_dict = {k: [] for k in original_context_keys}

    for k in original_context_keys:
        val_list = []
        for d in data:
            val_list.append(d[k])

        context_out_dict[k] = torch.concat(val_list, dim=0)

    return {
        "src": torch.tensor(padded_src, dtype=torch.long),  # for (seq_len, batch_size)
        "fragment": torch.tensor(padded_smiles_context.T, dtype=torch.long),
        "context": context_out_dict,
    }


class SmilesTask:
    @staticmethod
    def iter_batches(
        split,
        batch_size,
        device,
        context_keys: List[str],
        num_workers=0,
        dataset="processed_dataset.pkl",
        fragment_creator: BaseFragmentCreator = BricksFragmentCreator(),
    ):
        tokenizer = SmilesTokenizer()
        ds = PretokDataset(split, tokenizer.pad_token_id, dataset=dataset)
        is_ddp = int(os.environ.get("RANK", -1)) != -1
        dl = torch.utils.data.DataLoader(
            ds,
            batch_size=batch_size,
            pin_memory=True,
            num_workers=num_workers,
            shuffle=False,
            sampler=DistributedSampler(ds) if is_ddp else None,
            collate_fn=lambda batch: padding_collate_fn(
                batch, tokenizer, fragment_creator
            ),
        )

        for data in dl:
            data["src"] = data["src"].to(device, non_blocking=True)
            data["tgt"] = data["src"].to(device, non_blocking=True)

            data["src"] = data["src"][:-1, :].T  # batch_size, seq_len
            data["tgt"] = data["tgt"][1:, :].T  # batch_size, seq_len

            data["fragment"] = (
                data["fragment"].to(device, non_blocking=True).T
            )  # batch_size, seq_len
            keys = list(data["context"].keys())
            for d in keys:
                if d not in context_keys:
                    del data["context"][d]
                else:
                    data["context"][d] = data["context"][d].to(
                        device, non_blocking=True
                    )

            yield data


if __name__ == "__main__":
    
    pretokenize(
        data_file=os.path.join(
            DATA_CACHE_DIR,
            "OrganiX13.parquet",
        ),
        limit=None,  # Set how many molecules should be processed, if None all molecules will be processed,
        context=["logp", "sascore", "mol_weight"],
        out_name="processed_dataset",
        remove_nan_context_rows=False,
    )