dn-gh commited on
Commit
56becb1
·
1 Parent(s): 8d5d2be

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1616.40 +/- 104.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad864424d51b83c3e3b94205c2e6134234b5baab56886f474be81d70a3fdec52
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f39f52c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f39f52ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f39f52d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f39f52dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0f39f52e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0f39f52ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0f39f52f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f39ed8040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0f39ed80d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f39ed8160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f39ed81f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f39ed8280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0f39f53330>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675599163715662438,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmkej8XCQC/EiIbP0Y5D0COZ2o/XaGfv3Mcbj7Vewe/fGZsPx9BXz8QDXo/+Oixv7Yd1r6a0iBAwdqVvC8lI8CJ5/y+2CaOPnfZMD7d4Jg/7M6TPxoyMz9d8X6+41ozQL4Il7+KveK/xJqwPrRkp7/aj28/JviwP7SsP7/cfKo9/n3wP8HkKD6PGNq/IQCjvqyspT7tDLc+ekNjvjUUFj+lNyo/d003vtPRUT/Ptoq+GptuP1svLL/rtRPAMvgvP3e+4D7oRg5AX/CgPzeWTMC+CJe/ir3iv8SasD60ZKe/kPcXP+8k2D5VuMI+EmtKP3P1fz/IIwvAD7BzPiO9hL+Xw2S/l7SxvxGFvD/dtFrA3llCv5YGTT+PSoO+ZRZOv7w8cL6Ew5Q/3rhQP1wsqb46Jz++7IHEPaLzWD8cilxAvgiXv4iEED/EmrA+tGSnv1CBmL6WNUG9x0wSP1fkYj9c5qi+9DjdPlBPnb737YC/NhRMP1U7g71UKuQ8htAXPgSvUb/OOGg/HkIgPz2IfT1v2NY+e0iXPkZWMD/3KXU+5glhvQWqkj0UBaY+GoU+QL4Il7+IhBA/xJqwPrRkp7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQmRO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0LOPQAAAABwC/e/AAAAAGv5tL0AAAAAPuv0PwAAAACDt6u9AAAAAAcH+z8AAAAANUnWPQAAAABmKuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUc2FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJv9D0AAAAA/UPkvwAAAAAoVuG9AAAAAPCi8T8AAAAAXBs8vQAAAADJvPI/AAAAAOFCyb0AAAAA48ftvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0DrjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh8gY+AAAAALva2r8AAAAAugJ5PQAAAACED/U/AAAAAK9ukbwAAAAAokoBQAAAAADCKMq9AAAAAKzq7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrOoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZuXbPQAAAACoU/W/AAAAANKZ3zwAAAAArl/lPwAAAADN+Pe8AAAAABGv2j8AAAAAn4aJvQAAAADzLPu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWFvWqcVgyMAWyUTegDjAF0lEdAqiaTjtG/e3V9lChoBkdAkO7FTBInSmgHTegDaAhHQKomqxoIv8J1fZQoaAZHQJqb9Etuk1xoB03oA2gIR0CqKZbc45tFdX2UKGgGR0CcSEQNkOI7aAdN6ANoCEdAqitWp0fYBnV9lChoBkdAnDUARChN/WgHTegDaAhHQKoyi150KZ51fZQoaAZHQJxuvR1HOKRoB03oA2gIR0CqMqOKGcnWdX2UKGgGR0CcqU/pt78faAdN6ANoCEdAqjWa0a6z3XV9lChoBkdAl+wybhFVk2gHTegDaAhHQKo4HGax5cF1fZQoaAZHQJptMSM98qpoB03oA2gIR0CqQcU4aP0adX2UKGgGR0Ca+XVe8f3faAdN6ANoCEdAqkHdAVwgknV9lChoBkdAmnrKakRBeGgHTegDaAhHQKpE7I3BHkN1fZQoaAZHQJoSAs7MgU1oB03oA2gIR0CqRsPZyuIRdX2UKGgGR0CXc/h86V+raAdN6ANoCEdAqk36naWX1XV9lChoBkdAmMxSZF5OamgHTegDaAhHQKpOEwVTJhh1fZQoaAZHQJc9yZof0VdoB03oA2gIR0CqUQJPhybQdX2UKGgGR0Caybois4kvaAdN6ANoCEdAqlK/NgSey3V9lChoBkdAlfcmVAzHj2gHTegDaAhHQKpdCHwgDA91fZQoaAZHQJcNZRl6JIloB03oA2gIR0CqXSB2wFC+dX2UKGgGR0CXzGXwb2lEaAdN6ANoCEdAqmAPdRBNVXV9lChoBkdAl03osd1dPmgHTegDaAhHQKph1sVLzwt1fZQoaAZHQJZwNMM7U5NoB03oA2gIR0CqaScNH6MzdX2UKGgGR0CZ3yoXsPataAdN6ANoCEdAqmk/T5O8CnV9lChoBkdAmGARRQ79ymgHTegDaAhHQKpsOP6KtPp1fZQoaAZHQIxUyCz1K5FoB03oA2gIR0Cqbhlo11nvdX2UKGgGR0CWQlWT5ftyaAdN6ANoCEdAqnhe4gA6uHV9lChoBkdAk6hUdNnGsGgHTegDaAhHQKp4hd5Y5kt1fZQoaAZHQJbQiiblRxdoB03oA2gIR0Cqe6flIVdpdX2UKGgGR0CUpHQT238XaAdN6ANoCEdAqn12GVRk3HV9lChoBkdAmIbCHuZ1FGgHTegDaAhHQKqEzxYq5LB1fZQoaAZHQJxoeZUkv9NoB03oA2gIR0CqhOePq9oOdX2UKGgGR0CYc07+T/yYaAdN6ANoCEdAqofgQBgeBHV9lChoBkdAmyI5J9RaYGgHTegDaAhHQKqJq4H5aeR1fZQoaAZHQJUPRVDKHO9oB03oA2gIR0CqktIHcDbKdX2UKGgGR0CWaQbEgntwaAdN6ANoCEdAqpL4G2TgVHV9lChoBkdAkx95ul41P2gHTegDaAhHQKqW8zl90A91fZQoaAZHQJc8r07KaG5oB03oA2gIR0CqmK7SiM5wdX2UKGgGR0CRC72ZRbbDaAdN6ANoCEdAqp/r3mFJx3V9lChoBkdAkpTahtcfNmgHTegDaAhHQKqgBHyVfNR1fZQoaAZHQJOfgWac7QtoB03oA2gIR0Cqou3CTEBKdX2UKGgGR0CWC3OO801qaAdN6ANoCEdAqqStqSHM2XV9lChoBkdAkhAtl/Yra2gHTegDaAhHQKqs1zU7SzB1fZQoaAZHQJUNnr9l2/1oB03oA2gIR0CqrPujZcs2dX2UKGgGR0CQpRL7oB7vaAdN6ANoCEdAqrGXr8iwCHV9lChoBkdAkCJIkNWluWgHTegDaAhHQKqz4ois4kx1fZQoaAZHQJIVb6DXe3xoB03oA2gIR0CquzhV2icodX2UKGgGR0COBgyWzF/AaAdN6ANoCEdAqrtSyjYZmHV9lChoBkdAlFsOxrzoU2gHTegDaAhHQKq+WxO+IuZ1fZQoaAZHQJBuj+Q2dd5oB03oA2gIR0CqwBotL+PzdX2UKGgGR0CVRNUQ04zaaAdN6ANoCEdAqseHOGCZnnV9lChoBkdAlXXe3trsSmgHTegDaAhHQKrHqkHlfZ51fZQoaAZHQJrVX+xW1dBoB03oA2gIR0CqzAimMwUQdX2UKGgGR0CU888dxQzlaAdN6ANoCEdAqs7M45tFa3V9lChoBkdAmTBN9ph4MWgHTegDaAhHQKrWfE9+w1R1fZQoaAZHQJeKv+zdDY1oB03oA2gIR0Cq1pQWnCO4dX2UKGgGR0CSbQW8h9sraAdN6ANoCEdAqtmDX6InB3V9lChoBkdAe1d8KohpxmgHTegDaAhHQKrbOxfOUt91fZQoaAZHQJmZm/pMYdhoB03oA2gIR0Cq4mxB3RoidX2UKGgGR0CTaQe4Cp3paAdN6ANoCEdAquKE7p3X7XV9lChoBkdAlRuzgVGkOGgHTegDaAhHQKrmBuzhP0t1fZQoaAZHQJoT7zFuNxVoB03oA2gIR0Cq6K7BoEjgdX2UKGgGR0CW/ju1F6RhaAdN6ANoCEdAqvFxgTh5xHV9lChoBkdAkapU8A7xNWgHTegDaAhHQKrxiir1dxB1fZQoaAZHQJQKFUlzEJloB03oA2gIR0Cq9IJpvgm7dX2UKGgGR0COkRYh+vyLaAdN6ANoCEdAqvZGH58BuHV9lChoBkdAkQVTRUm2LGgHTegDaAhHQKr9nQTmGM51fZQoaAZHQJXOOxPfsNVoB03oA2gIR0Cq/bVdonKGdX2UKGgGR0CXM/xSYPXkaAdN6ANoCEdAqwC4eq7yx3V9lChoBkdAguTV4gRsdmgHTegDaAhHQKsDGT101ZV1fZQoaAZHQJgs4Cr92oxoB03oA2gIR0CrDMMImgJ1dX2UKGgGR0CaiByGSIP9aAdN6ANoCEdAqwzbKvFFUnV9lChoBkdAnBJ+M+/xlWgHTegDaAhHQKsPtguyu6p1fZQoaAZHQJ3TdvXK8thoB03oA2gIR0CrEWel9BrvdX2UKGgGR0B3zNBeHBUJaAdNGQFoCEdAqxTR20Re1XV9lChoBkdAnl6fP1L8JmgHTegDaAhHQKsYtGG21D11fZQoaAZHQJ1SjzH0btJoB03oA2gIR0CrGM0u+RHPdX2UKGgGR0CchnhRIjGDaAdN6ANoCEdAqxu1+iJwbXV9lChoBkdAnUGghbGFSWgHTegDaAhHQKsiMjqv/zd1fZQoaAZHQJqma2jO9nNoB03oA2gIR0CrJ9Of/WDpdX2UKGgGR0CdHaeNkvsaaAdN6ANoCEdAqyfr9sJpnHV9lChoBkdAmzNF5Sm65GgHTegDaAhHQKsq7gUDdQB1fZQoaAZHQJfpGbutwJhoB03oA2gIR0CrMA6FmFrVdX2UKGgGR0CasyJEYwZgaAdN6ANoCEdAqzPuZkTYd3V9lChoBkdAmnOSRfWtl2gHTegDaAhHQKs0BypaRp11fZQoaAZHQJhl3VRUFStoB03oA2gIR0CrNvDfm9xqdX2UKGgGR0CYmQgwoLG8aAdN6ANoCEdAqzynKQq7RXV9lChoBkdAmeNVfAsTWWgHTegDaAhHQKtCieq7yx11fZQoaAZHQJlDnPZ7HABoB03oA2gIR0CrQq8A7xNJdX2UKGgGR0CZ982EkB0ZaAdN6ANoCEdAq0Y1HSWqtHV9lChoBkdAmb3SkoF3ZGgHTegDaAhHQKtLY92X9it1fZQoaAZHQJgojRnezldoB03oA2gIR0CrT03wsoUjdX2UKGgGR0CYmoJxNqQBaAdN6ANoCEdAq09ntnf2snV9lChoBkdAmdCkqUeMh2gHTegDaAhHQKtSUK4QSSN1fZQoaAZHQJiNqYx+KCRoB03oA2gIR0CrV3VdX1aodX2UKGgGR0CZGZxKxs2vaAdN6ANoCEdAq1yhNmDlHXV9lChoBkdAmXuJoCdSVGgHTegDaAhHQKtcxpxm03R1fZQoaAZHQJhUoBmwqy5oB03oA2gIR0CrYUrkS26TdX2UKGgGR0CXuhFHJ9y+aAdN6ANoCEdAq2ZenuRcNnV9lChoBkdAk3K8bBGhEmgHTegDaAhHQKtqNbMX7+F1fZQoaAZHQJmrybKA8SxoB03oA2gIR0Crak4U34sVdX2UKGgGR0CYjkG4qgAZaAdN6ANoCEdAq20x8+iaiXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ea358a95694af96830c6d34b385ded70cd2f9beff53e92f1f5bae1be9528002
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb2e2cc19abf267f9cebff4d85c9951ebb2b351d75596fe91d32d4c4d2b37ff
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f39f52c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f39f52ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f39f52d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f39f52dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f0f39f52e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f39f52ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0f39f52f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f39ed8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f39ed80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f39ed8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f39ed81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f39ed8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0f39f53330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675599163715662438, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmkej8XCQC/EiIbP0Y5D0COZ2o/XaGfv3Mcbj7Vewe/fGZsPx9BXz8QDXo/+Oixv7Yd1r6a0iBAwdqVvC8lI8CJ5/y+2CaOPnfZMD7d4Jg/7M6TPxoyMz9d8X6+41ozQL4Il7+KveK/xJqwPrRkp7/aj28/JviwP7SsP7/cfKo9/n3wP8HkKD6PGNq/IQCjvqyspT7tDLc+ekNjvjUUFj+lNyo/d003vtPRUT/Ptoq+GptuP1svLL/rtRPAMvgvP3e+4D7oRg5AX/CgPzeWTMC+CJe/ir3iv8SasD60ZKe/kPcXP+8k2D5VuMI+EmtKP3P1fz/IIwvAD7BzPiO9hL+Xw2S/l7SxvxGFvD/dtFrA3llCv5YGTT+PSoO+ZRZOv7w8cL6Ew5Q/3rhQP1wsqb46Jz++7IHEPaLzWD8cilxAvgiXv4iEED/EmrA+tGSnv1CBmL6WNUG9x0wSP1fkYj9c5qi+9DjdPlBPnb737YC/NhRMP1U7g71UKuQ8htAXPgSvUb/OOGg/HkIgPz2IfT1v2NY+e0iXPkZWMD/3KXU+5glhvQWqkj0UBaY+GoU+QL4Il7+IhBA/xJqwPrRkp7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQmRO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0LOPQAAAABwC/e/AAAAAGv5tL0AAAAAPuv0PwAAAACDt6u9AAAAAAcH+z8AAAAANUnWPQAAAABmKuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUc2FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJv9D0AAAAA/UPkvwAAAAAoVuG9AAAAAPCi8T8AAAAAXBs8vQAAAADJvPI/AAAAAOFCyb0AAAAA48ftvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0DrjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh8gY+AAAAALva2r8AAAAAugJ5PQAAAACED/U/AAAAAK9ukbwAAAAAokoBQAAAAADCKMq9AAAAAKzq7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrOoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZuXbPQAAAACoU/W/AAAAANKZ3zwAAAAArl/lPwAAAADN+Pe8AAAAABGv2j8AAAAAn4aJvQAAAADzLPu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWFvWqcVgyMAWyUTegDjAF0lEdAqiaTjtG/e3V9lChoBkdAkO7FTBInSmgHTegDaAhHQKomqxoIv8J1fZQoaAZHQJqb9Etuk1xoB03oA2gIR0CqKZbc45tFdX2UKGgGR0CcSEQNkOI7aAdN6ANoCEdAqitWp0fYBnV9lChoBkdAnDUARChN/WgHTegDaAhHQKoyi150KZ51fZQoaAZHQJxuvR1HOKRoB03oA2gIR0CqMqOKGcnWdX2UKGgGR0CcqU/pt78faAdN6ANoCEdAqjWa0a6z3XV9lChoBkdAl+wybhFVk2gHTegDaAhHQKo4HGax5cF1fZQoaAZHQJptMSM98qpoB03oA2gIR0CqQcU4aP0adX2UKGgGR0Ca+XVe8f3faAdN6ANoCEdAqkHdAVwgknV9lChoBkdAmnrKakRBeGgHTegDaAhHQKpE7I3BHkN1fZQoaAZHQJoSAs7MgU1oB03oA2gIR0CqRsPZyuIRdX2UKGgGR0CXc/h86V+raAdN6ANoCEdAqk36naWX1XV9lChoBkdAmMxSZF5OamgHTegDaAhHQKpOEwVTJhh1fZQoaAZHQJc9yZof0VdoB03oA2gIR0CqUQJPhybQdX2UKGgGR0Caybois4kvaAdN6ANoCEdAqlK/NgSey3V9lChoBkdAlfcmVAzHj2gHTegDaAhHQKpdCHwgDA91fZQoaAZHQJcNZRl6JIloB03oA2gIR0CqXSB2wFC+dX2UKGgGR0CXzGXwb2lEaAdN6ANoCEdAqmAPdRBNVXV9lChoBkdAl03osd1dPmgHTegDaAhHQKph1sVLzwt1fZQoaAZHQJZwNMM7U5NoB03oA2gIR0CqaScNH6MzdX2UKGgGR0CZ3yoXsPataAdN6ANoCEdAqmk/T5O8CnV9lChoBkdAmGARRQ79ymgHTegDaAhHQKpsOP6KtPp1fZQoaAZHQIxUyCz1K5FoB03oA2gIR0Cqbhlo11nvdX2UKGgGR0CWQlWT5ftyaAdN6ANoCEdAqnhe4gA6uHV9lChoBkdAk6hUdNnGsGgHTegDaAhHQKp4hd5Y5kt1fZQoaAZHQJbQiiblRxdoB03oA2gIR0Cqe6flIVdpdX2UKGgGR0CUpHQT238XaAdN6ANoCEdAqn12GVRk3HV9lChoBkdAmIbCHuZ1FGgHTegDaAhHQKqEzxYq5LB1fZQoaAZHQJxoeZUkv9NoB03oA2gIR0CqhOePq9oOdX2UKGgGR0CYc07+T/yYaAdN6ANoCEdAqofgQBgeBHV9lChoBkdAmyI5J9RaYGgHTegDaAhHQKqJq4H5aeR1fZQoaAZHQJUPRVDKHO9oB03oA2gIR0CqktIHcDbKdX2UKGgGR0CWaQbEgntwaAdN6ANoCEdAqpL4G2TgVHV9lChoBkdAkx95ul41P2gHTegDaAhHQKqW8zl90A91fZQoaAZHQJc8r07KaG5oB03oA2gIR0CqmK7SiM5wdX2UKGgGR0CRC72ZRbbDaAdN6ANoCEdAqp/r3mFJx3V9lChoBkdAkpTahtcfNmgHTegDaAhHQKqgBHyVfNR1fZQoaAZHQJOfgWac7QtoB03oA2gIR0Cqou3CTEBKdX2UKGgGR0CWC3OO801qaAdN6ANoCEdAqqStqSHM2XV9lChoBkdAkhAtl/Yra2gHTegDaAhHQKqs1zU7SzB1fZQoaAZHQJUNnr9l2/1oB03oA2gIR0CqrPujZcs2dX2UKGgGR0CQpRL7oB7vaAdN6ANoCEdAqrGXr8iwCHV9lChoBkdAkCJIkNWluWgHTegDaAhHQKqz4ois4kx1fZQoaAZHQJIVb6DXe3xoB03oA2gIR0CquzhV2icodX2UKGgGR0COBgyWzF/AaAdN6ANoCEdAqrtSyjYZmHV9lChoBkdAlFsOxrzoU2gHTegDaAhHQKq+WxO+IuZ1fZQoaAZHQJBuj+Q2dd5oB03oA2gIR0CqwBotL+PzdX2UKGgGR0CVRNUQ04zaaAdN6ANoCEdAqseHOGCZnnV9lChoBkdAlXXe3trsSmgHTegDaAhHQKrHqkHlfZ51fZQoaAZHQJrVX+xW1dBoB03oA2gIR0CqzAimMwUQdX2UKGgGR0CU888dxQzlaAdN6ANoCEdAqs7M45tFa3V9lChoBkdAmTBN9ph4MWgHTegDaAhHQKrWfE9+w1R1fZQoaAZHQJeKv+zdDY1oB03oA2gIR0Cq1pQWnCO4dX2UKGgGR0CSbQW8h9sraAdN6ANoCEdAqtmDX6InB3V9lChoBkdAe1d8KohpxmgHTegDaAhHQKrbOxfOUt91fZQoaAZHQJmZm/pMYdhoB03oA2gIR0Cq4mxB3RoidX2UKGgGR0CTaQe4Cp3paAdN6ANoCEdAquKE7p3X7XV9lChoBkdAlRuzgVGkOGgHTegDaAhHQKrmBuzhP0t1fZQoaAZHQJoT7zFuNxVoB03oA2gIR0Cq6K7BoEjgdX2UKGgGR0CW/ju1F6RhaAdN6ANoCEdAqvFxgTh5xHV9lChoBkdAkapU8A7xNWgHTegDaAhHQKrxiir1dxB1fZQoaAZHQJQKFUlzEJloB03oA2gIR0Cq9IJpvgm7dX2UKGgGR0COkRYh+vyLaAdN6ANoCEdAqvZGH58BuHV9lChoBkdAkQVTRUm2LGgHTegDaAhHQKr9nQTmGM51fZQoaAZHQJXOOxPfsNVoB03oA2gIR0Cq/bVdonKGdX2UKGgGR0CXM/xSYPXkaAdN6ANoCEdAqwC4eq7yx3V9lChoBkdAguTV4gRsdmgHTegDaAhHQKsDGT101ZV1fZQoaAZHQJgs4Cr92oxoB03oA2gIR0CrDMMImgJ1dX2UKGgGR0CaiByGSIP9aAdN6ANoCEdAqwzbKvFFUnV9lChoBkdAnBJ+M+/xlWgHTegDaAhHQKsPtguyu6p1fZQoaAZHQJ3TdvXK8thoB03oA2gIR0CrEWel9BrvdX2UKGgGR0B3zNBeHBUJaAdNGQFoCEdAqxTR20Re1XV9lChoBkdAnl6fP1L8JmgHTegDaAhHQKsYtGG21D11fZQoaAZHQJ1SjzH0btJoB03oA2gIR0CrGM0u+RHPdX2UKGgGR0CchnhRIjGDaAdN6ANoCEdAqxu1+iJwbXV9lChoBkdAnUGghbGFSWgHTegDaAhHQKsiMjqv/zd1fZQoaAZHQJqma2jO9nNoB03oA2gIR0CrJ9Of/WDpdX2UKGgGR0CdHaeNkvsaaAdN6ANoCEdAqyfr9sJpnHV9lChoBkdAmzNF5Sm65GgHTegDaAhHQKsq7gUDdQB1fZQoaAZHQJfpGbutwJhoB03oA2gIR0CrMA6FmFrVdX2UKGgGR0CasyJEYwZgaAdN6ANoCEdAqzPuZkTYd3V9lChoBkdAmnOSRfWtl2gHTegDaAhHQKs0BypaRp11fZQoaAZHQJhl3VRUFStoB03oA2gIR0CrNvDfm9xqdX2UKGgGR0CYmQgwoLG8aAdN6ANoCEdAqzynKQq7RXV9lChoBkdAmeNVfAsTWWgHTegDaAhHQKtCieq7yx11fZQoaAZHQJlDnPZ7HABoB03oA2gIR0CrQq8A7xNJdX2UKGgGR0CZ982EkB0ZaAdN6ANoCEdAq0Y1HSWqtHV9lChoBkdAmb3SkoF3ZGgHTegDaAhHQKtLY92X9it1fZQoaAZHQJgojRnezldoB03oA2gIR0CrT03wsoUjdX2UKGgGR0CYmoJxNqQBaAdN6ANoCEdAq09ntnf2snV9lChoBkdAmdCkqUeMh2gHTegDaAhHQKtSUK4QSSN1fZQoaAZHQJiNqYx+KCRoB03oA2gIR0CrV3VdX1aodX2UKGgGR0CZGZxKxs2vaAdN6ANoCEdAq1yhNmDlHXV9lChoBkdAmXuJoCdSVGgHTegDaAhHQKtcxpxm03R1fZQoaAZHQJhUoBmwqy5oB03oA2gIR0CrYUrkS26TdX2UKGgGR0CXuhFHJ9y+aAdN6ANoCEdAq2ZenuRcNnV9lChoBkdAk3K8bBGhEmgHTegDaAhHQKtqNbMX7+F1fZQoaAZHQJmrybKA8SxoB03oA2gIR0Crak4U34sVdX2UKGgGR0CYjkG4qgAZaAdN6ANoCEdAq20x8+iaiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51d07086f3a2abc05804fa3590b7637b151fcf90d1af7eda4db1f5195d24bb6a
3
+ size 1101464
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1616.3954193814484, "std_reward": 104.93278192473528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T13:11:51.520782"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58ca09b8a8b396c476df7dbf65fb848c1803f9ef2011124e9eb2ad7791c5fe13
3
+ size 2136