Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1616.40 +/- 104.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad864424d51b83c3e3b94205c2e6134234b5baab56886f474be81d70a3fdec52
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f39f52c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f39f52ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f39f52d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f39f52dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0f39f52e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0f39f52ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0f39f52f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f39ed8040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0f39ed80d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f39ed8160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f39ed81f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f39ed8280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0f39f53330>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675599163715662438,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmkej8XCQC/EiIbP0Y5D0COZ2o/XaGfv3Mcbj7Vewe/fGZsPx9BXz8QDXo/+Oixv7Yd1r6a0iBAwdqVvC8lI8CJ5/y+2CaOPnfZMD7d4Jg/7M6TPxoyMz9d8X6+41ozQL4Il7+KveK/xJqwPrRkp7/aj28/JviwP7SsP7/cfKo9/n3wP8HkKD6PGNq/IQCjvqyspT7tDLc+ekNjvjUUFj+lNyo/d003vtPRUT/Ptoq+GptuP1svLL/rtRPAMvgvP3e+4D7oRg5AX/CgPzeWTMC+CJe/ir3iv8SasD60ZKe/kPcXP+8k2D5VuMI+EmtKP3P1fz/IIwvAD7BzPiO9hL+Xw2S/l7SxvxGFvD/dtFrA3llCv5YGTT+PSoO+ZRZOv7w8cL6Ew5Q/3rhQP1wsqb46Jz++7IHEPaLzWD8cilxAvgiXv4iEED/EmrA+tGSnv1CBmL6WNUG9x0wSP1fkYj9c5qi+9DjdPlBPnb737YC/NhRMP1U7g71UKuQ8htAXPgSvUb/OOGg/HkIgPz2IfT1v2NY+e0iXPkZWMD/3KXU+5glhvQWqkj0UBaY+GoU+QL4Il7+IhBA/xJqwPrRkp7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQmRO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0LOPQAAAABwC/e/AAAAAGv5tL0AAAAAPuv0PwAAAACDt6u9AAAAAAcH+z8AAAAANUnWPQAAAABmKuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUc2FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJv9D0AAAAA/UPkvwAAAAAoVuG9AAAAAPCi8T8AAAAAXBs8vQAAAADJvPI/AAAAAOFCyb0AAAAA48ftvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0DrjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh8gY+AAAAALva2r8AAAAAugJ5PQAAAACED/U/AAAAAK9ukbwAAAAAokoBQAAAAADCKMq9AAAAAKzq7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrOoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZuXbPQAAAACoU/W/AAAAANKZ3zwAAAAArl/lPwAAAADN+Pe8AAAAABGv2j8AAAAAn4aJvQAAAADzLPu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWFvWqcVgyMAWyUTegDjAF0lEdAqiaTjtG/e3V9lChoBkdAkO7FTBInSmgHTegDaAhHQKomqxoIv8J1fZQoaAZHQJqb9Etuk1xoB03oA2gIR0CqKZbc45tFdX2UKGgGR0CcSEQNkOI7aAdN6ANoCEdAqitWp0fYBnV9lChoBkdAnDUARChN/WgHTegDaAhHQKoyi150KZ51fZQoaAZHQJxuvR1HOKRoB03oA2gIR0CqMqOKGcnWdX2UKGgGR0CcqU/pt78faAdN6ANoCEdAqjWa0a6z3XV9lChoBkdAl+wybhFVk2gHTegDaAhHQKo4HGax5cF1fZQoaAZHQJptMSM98qpoB03oA2gIR0CqQcU4aP0adX2UKGgGR0Ca+XVe8f3faAdN6ANoCEdAqkHdAVwgknV9lChoBkdAmnrKakRBeGgHTegDaAhHQKpE7I3BHkN1fZQoaAZHQJoSAs7MgU1oB03oA2gIR0CqRsPZyuIRdX2UKGgGR0CXc/h86V+raAdN6ANoCEdAqk36naWX1XV9lChoBkdAmMxSZF5OamgHTegDaAhHQKpOEwVTJhh1fZQoaAZHQJc9yZof0VdoB03oA2gIR0CqUQJPhybQdX2UKGgGR0Caybois4kvaAdN6ANoCEdAqlK/NgSey3V9lChoBkdAlfcmVAzHj2gHTegDaAhHQKpdCHwgDA91fZQoaAZHQJcNZRl6JIloB03oA2gIR0CqXSB2wFC+dX2UKGgGR0CXzGXwb2lEaAdN6ANoCEdAqmAPdRBNVXV9lChoBkdAl03osd1dPmgHTegDaAhHQKph1sVLzwt1fZQoaAZHQJZwNMM7U5NoB03oA2gIR0CqaScNH6MzdX2UKGgGR0CZ3yoXsPataAdN6ANoCEdAqmk/T5O8CnV9lChoBkdAmGARRQ79ymgHTegDaAhHQKpsOP6KtPp1fZQoaAZHQIxUyCz1K5FoB03oA2gIR0Cqbhlo11nvdX2UKGgGR0CWQlWT5ftyaAdN6ANoCEdAqnhe4gA6uHV9lChoBkdAk6hUdNnGsGgHTegDaAhHQKp4hd5Y5kt1fZQoaAZHQJbQiiblRxdoB03oA2gIR0Cqe6flIVdpdX2UKGgGR0CUpHQT238XaAdN6ANoCEdAqn12GVRk3HV9lChoBkdAmIbCHuZ1FGgHTegDaAhHQKqEzxYq5LB1fZQoaAZHQJxoeZUkv9NoB03oA2gIR0CqhOePq9oOdX2UKGgGR0CYc07+T/yYaAdN6ANoCEdAqofgQBgeBHV9lChoBkdAmyI5J9RaYGgHTegDaAhHQKqJq4H5aeR1fZQoaAZHQJUPRVDKHO9oB03oA2gIR0CqktIHcDbKdX2UKGgGR0CWaQbEgntwaAdN6ANoCEdAqpL4G2TgVHV9lChoBkdAkx95ul41P2gHTegDaAhHQKqW8zl90A91fZQoaAZHQJc8r07KaG5oB03oA2gIR0CqmK7SiM5wdX2UKGgGR0CRC72ZRbbDaAdN6ANoCEdAqp/r3mFJx3V9lChoBkdAkpTahtcfNmgHTegDaAhHQKqgBHyVfNR1fZQoaAZHQJOfgWac7QtoB03oA2gIR0Cqou3CTEBKdX2UKGgGR0CWC3OO801qaAdN6ANoCEdAqqStqSHM2XV9lChoBkdAkhAtl/Yra2gHTegDaAhHQKqs1zU7SzB1fZQoaAZHQJUNnr9l2/1oB03oA2gIR0CqrPujZcs2dX2UKGgGR0CQpRL7oB7vaAdN6ANoCEdAqrGXr8iwCHV9lChoBkdAkCJIkNWluWgHTegDaAhHQKqz4ois4kx1fZQoaAZHQJIVb6DXe3xoB03oA2gIR0CquzhV2icodX2UKGgGR0COBgyWzF/AaAdN6ANoCEdAqrtSyjYZmHV9lChoBkdAlFsOxrzoU2gHTegDaAhHQKq+WxO+IuZ1fZQoaAZHQJBuj+Q2dd5oB03oA2gIR0CqwBotL+PzdX2UKGgGR0CVRNUQ04zaaAdN6ANoCEdAqseHOGCZnnV9lChoBkdAlXXe3trsSmgHTegDaAhHQKrHqkHlfZ51fZQoaAZHQJrVX+xW1dBoB03oA2gIR0CqzAimMwUQdX2UKGgGR0CU888dxQzlaAdN6ANoCEdAqs7M45tFa3V9lChoBkdAmTBN9ph4MWgHTegDaAhHQKrWfE9+w1R1fZQoaAZHQJeKv+zdDY1oB03oA2gIR0Cq1pQWnCO4dX2UKGgGR0CSbQW8h9sraAdN6ANoCEdAqtmDX6InB3V9lChoBkdAe1d8KohpxmgHTegDaAhHQKrbOxfOUt91fZQoaAZHQJmZm/pMYdhoB03oA2gIR0Cq4mxB3RoidX2UKGgGR0CTaQe4Cp3paAdN6ANoCEdAquKE7p3X7XV9lChoBkdAlRuzgVGkOGgHTegDaAhHQKrmBuzhP0t1fZQoaAZHQJoT7zFuNxVoB03oA2gIR0Cq6K7BoEjgdX2UKGgGR0CW/ju1F6RhaAdN6ANoCEdAqvFxgTh5xHV9lChoBkdAkapU8A7xNWgHTegDaAhHQKrxiir1dxB1fZQoaAZHQJQKFUlzEJloB03oA2gIR0Cq9IJpvgm7dX2UKGgGR0COkRYh+vyLaAdN6ANoCEdAqvZGH58BuHV9lChoBkdAkQVTRUm2LGgHTegDaAhHQKr9nQTmGM51fZQoaAZHQJXOOxPfsNVoB03oA2gIR0Cq/bVdonKGdX2UKGgGR0CXM/xSYPXkaAdN6ANoCEdAqwC4eq7yx3V9lChoBkdAguTV4gRsdmgHTegDaAhHQKsDGT101ZV1fZQoaAZHQJgs4Cr92oxoB03oA2gIR0CrDMMImgJ1dX2UKGgGR0CaiByGSIP9aAdN6ANoCEdAqwzbKvFFUnV9lChoBkdAnBJ+M+/xlWgHTegDaAhHQKsPtguyu6p1fZQoaAZHQJ3TdvXK8thoB03oA2gIR0CrEWel9BrvdX2UKGgGR0B3zNBeHBUJaAdNGQFoCEdAqxTR20Re1XV9lChoBkdAnl6fP1L8JmgHTegDaAhHQKsYtGG21D11fZQoaAZHQJ1SjzH0btJoB03oA2gIR0CrGM0u+RHPdX2UKGgGR0CchnhRIjGDaAdN6ANoCEdAqxu1+iJwbXV9lChoBkdAnUGghbGFSWgHTegDaAhHQKsiMjqv/zd1fZQoaAZHQJqma2jO9nNoB03oA2gIR0CrJ9Of/WDpdX2UKGgGR0CdHaeNkvsaaAdN6ANoCEdAqyfr9sJpnHV9lChoBkdAmzNF5Sm65GgHTegDaAhHQKsq7gUDdQB1fZQoaAZHQJfpGbutwJhoB03oA2gIR0CrMA6FmFrVdX2UKGgGR0CasyJEYwZgaAdN6ANoCEdAqzPuZkTYd3V9lChoBkdAmnOSRfWtl2gHTegDaAhHQKs0BypaRp11fZQoaAZHQJhl3VRUFStoB03oA2gIR0CrNvDfm9xqdX2UKGgGR0CYmQgwoLG8aAdN6ANoCEdAqzynKQq7RXV9lChoBkdAmeNVfAsTWWgHTegDaAhHQKtCieq7yx11fZQoaAZHQJlDnPZ7HABoB03oA2gIR0CrQq8A7xNJdX2UKGgGR0CZ982EkB0ZaAdN6ANoCEdAq0Y1HSWqtHV9lChoBkdAmb3SkoF3ZGgHTegDaAhHQKtLY92X9it1fZQoaAZHQJgojRnezldoB03oA2gIR0CrT03wsoUjdX2UKGgGR0CYmoJxNqQBaAdN6ANoCEdAq09ntnf2snV9lChoBkdAmdCkqUeMh2gHTegDaAhHQKtSUK4QSSN1fZQoaAZHQJiNqYx+KCRoB03oA2gIR0CrV3VdX1aodX2UKGgGR0CZGZxKxs2vaAdN6ANoCEdAq1yhNmDlHXV9lChoBkdAmXuJoCdSVGgHTegDaAhHQKtcxpxm03R1fZQoaAZHQJhUoBmwqy5oB03oA2gIR0CrYUrkS26TdX2UKGgGR0CXuhFHJ9y+aAdN6ANoCEdAq2ZenuRcNnV9lChoBkdAk3K8bBGhEmgHTegDaAhHQKtqNbMX7+F1fZQoaAZHQJmrybKA8SxoB03oA2gIR0Crak4U34sVdX2UKGgGR0CYjkG4qgAZaAdN6ANoCEdAq20x8+iaiXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ea358a95694af96830c6d34b385ded70cd2f9beff53e92f1f5bae1be9528002
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fb2e2cc19abf267f9cebff4d85c9951ebb2b351d75596fe91d32d4c4d2b37ff
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0f39f52c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0f39f52ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0f39f52d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0f39f52dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f0f39f52e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f0f39f52ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0f39f52f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0f39ed8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0f39ed80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0f39ed8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0f39ed81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0f39ed8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0f39f53330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675599163715662438, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOmkej8XCQC/EiIbP0Y5D0COZ2o/XaGfv3Mcbj7Vewe/fGZsPx9BXz8QDXo/+Oixv7Yd1r6a0iBAwdqVvC8lI8CJ5/y+2CaOPnfZMD7d4Jg/7M6TPxoyMz9d8X6+41ozQL4Il7+KveK/xJqwPrRkp7/aj28/JviwP7SsP7/cfKo9/n3wP8HkKD6PGNq/IQCjvqyspT7tDLc+ekNjvjUUFj+lNyo/d003vtPRUT/Ptoq+GptuP1svLL/rtRPAMvgvP3e+4D7oRg5AX/CgPzeWTMC+CJe/ir3iv8SasD60ZKe/kPcXP+8k2D5VuMI+EmtKP3P1fz/IIwvAD7BzPiO9hL+Xw2S/l7SxvxGFvD/dtFrA3llCv5YGTT+PSoO+ZRZOv7w8cL6Ew5Q/3rhQP1wsqb46Jz++7IHEPaLzWD8cilxAvgiXv4iEED/EmrA+tGSnv1CBmL6WNUG9x0wSP1fkYj9c5qi+9DjdPlBPnb737YC/NhRMP1U7g71UKuQ8htAXPgSvUb/OOGg/HkIgPz2IfT1v2NY+e0iXPkZWMD/3KXU+5glhvQWqkj0UBaY+GoU+QL4Il7+IhBA/xJqwPrRkp7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQmRO3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0LOPQAAAABwC/e/AAAAAGv5tL0AAAAAPuv0PwAAAACDt6u9AAAAAAcH+z8AAAAANUnWPQAAAABmKuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUc2FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJv9D0AAAAA/UPkvwAAAAAoVuG9AAAAAPCi8T8AAAAAXBs8vQAAAADJvPI/AAAAAOFCyb0AAAAA48ftvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0DrjQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAh8gY+AAAAALva2r8AAAAAugJ5PQAAAACED/U/AAAAAK9ukbwAAAAAokoBQAAAAADCKMq9AAAAAKzq7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrOoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZuXbPQAAAACoU/W/AAAAANKZ3zwAAAAArl/lPwAAAADN+Pe8AAAAABGv2j8AAAAAn4aJvQAAAADzLPu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWFvWqcVgyMAWyUTegDjAF0lEdAqiaTjtG/e3V9lChoBkdAkO7FTBInSmgHTegDaAhHQKomqxoIv8J1fZQoaAZHQJqb9Etuk1xoB03oA2gIR0CqKZbc45tFdX2UKGgGR0CcSEQNkOI7aAdN6ANoCEdAqitWp0fYBnV9lChoBkdAnDUARChN/WgHTegDaAhHQKoyi150KZ51fZQoaAZHQJxuvR1HOKRoB03oA2gIR0CqMqOKGcnWdX2UKGgGR0CcqU/pt78faAdN6ANoCEdAqjWa0a6z3XV9lChoBkdAl+wybhFVk2gHTegDaAhHQKo4HGax5cF1fZQoaAZHQJptMSM98qpoB03oA2gIR0CqQcU4aP0adX2UKGgGR0Ca+XVe8f3faAdN6ANoCEdAqkHdAVwgknV9lChoBkdAmnrKakRBeGgHTegDaAhHQKpE7I3BHkN1fZQoaAZHQJoSAs7MgU1oB03oA2gIR0CqRsPZyuIRdX2UKGgGR0CXc/h86V+raAdN6ANoCEdAqk36naWX1XV9lChoBkdAmMxSZF5OamgHTegDaAhHQKpOEwVTJhh1fZQoaAZHQJc9yZof0VdoB03oA2gIR0CqUQJPhybQdX2UKGgGR0Caybois4kvaAdN6ANoCEdAqlK/NgSey3V9lChoBkdAlfcmVAzHj2gHTegDaAhHQKpdCHwgDA91fZQoaAZHQJcNZRl6JIloB03oA2gIR0CqXSB2wFC+dX2UKGgGR0CXzGXwb2lEaAdN6ANoCEdAqmAPdRBNVXV9lChoBkdAl03osd1dPmgHTegDaAhHQKph1sVLzwt1fZQoaAZHQJZwNMM7U5NoB03oA2gIR0CqaScNH6MzdX2UKGgGR0CZ3yoXsPataAdN6ANoCEdAqmk/T5O8CnV9lChoBkdAmGARRQ79ymgHTegDaAhHQKpsOP6KtPp1fZQoaAZHQIxUyCz1K5FoB03oA2gIR0Cqbhlo11nvdX2UKGgGR0CWQlWT5ftyaAdN6ANoCEdAqnhe4gA6uHV9lChoBkdAk6hUdNnGsGgHTegDaAhHQKp4hd5Y5kt1fZQoaAZHQJbQiiblRxdoB03oA2gIR0Cqe6flIVdpdX2UKGgGR0CUpHQT238XaAdN6ANoCEdAqn12GVRk3HV9lChoBkdAmIbCHuZ1FGgHTegDaAhHQKqEzxYq5LB1fZQoaAZHQJxoeZUkv9NoB03oA2gIR0CqhOePq9oOdX2UKGgGR0CYc07+T/yYaAdN6ANoCEdAqofgQBgeBHV9lChoBkdAmyI5J9RaYGgHTegDaAhHQKqJq4H5aeR1fZQoaAZHQJUPRVDKHO9oB03oA2gIR0CqktIHcDbKdX2UKGgGR0CWaQbEgntwaAdN6ANoCEdAqpL4G2TgVHV9lChoBkdAkx95ul41P2gHTegDaAhHQKqW8zl90A91fZQoaAZHQJc8r07KaG5oB03oA2gIR0CqmK7SiM5wdX2UKGgGR0CRC72ZRbbDaAdN6ANoCEdAqp/r3mFJx3V9lChoBkdAkpTahtcfNmgHTegDaAhHQKqgBHyVfNR1fZQoaAZHQJOfgWac7QtoB03oA2gIR0Cqou3CTEBKdX2UKGgGR0CWC3OO801qaAdN6ANoCEdAqqStqSHM2XV9lChoBkdAkhAtl/Yra2gHTegDaAhHQKqs1zU7SzB1fZQoaAZHQJUNnr9l2/1oB03oA2gIR0CqrPujZcs2dX2UKGgGR0CQpRL7oB7vaAdN6ANoCEdAqrGXr8iwCHV9lChoBkdAkCJIkNWluWgHTegDaAhHQKqz4ois4kx1fZQoaAZHQJIVb6DXe3xoB03oA2gIR0CquzhV2icodX2UKGgGR0COBgyWzF/AaAdN6ANoCEdAqrtSyjYZmHV9lChoBkdAlFsOxrzoU2gHTegDaAhHQKq+WxO+IuZ1fZQoaAZHQJBuj+Q2dd5oB03oA2gIR0CqwBotL+PzdX2UKGgGR0CVRNUQ04zaaAdN6ANoCEdAqseHOGCZnnV9lChoBkdAlXXe3trsSmgHTegDaAhHQKrHqkHlfZ51fZQoaAZHQJrVX+xW1dBoB03oA2gIR0CqzAimMwUQdX2UKGgGR0CU888dxQzlaAdN6ANoCEdAqs7M45tFa3V9lChoBkdAmTBN9ph4MWgHTegDaAhHQKrWfE9+w1R1fZQoaAZHQJeKv+zdDY1oB03oA2gIR0Cq1pQWnCO4dX2UKGgGR0CSbQW8h9sraAdN6ANoCEdAqtmDX6InB3V9lChoBkdAe1d8KohpxmgHTegDaAhHQKrbOxfOUt91fZQoaAZHQJmZm/pMYdhoB03oA2gIR0Cq4mxB3RoidX2UKGgGR0CTaQe4Cp3paAdN6ANoCEdAquKE7p3X7XV9lChoBkdAlRuzgVGkOGgHTegDaAhHQKrmBuzhP0t1fZQoaAZHQJoT7zFuNxVoB03oA2gIR0Cq6K7BoEjgdX2UKGgGR0CW/ju1F6RhaAdN6ANoCEdAqvFxgTh5xHV9lChoBkdAkapU8A7xNWgHTegDaAhHQKrxiir1dxB1fZQoaAZHQJQKFUlzEJloB03oA2gIR0Cq9IJpvgm7dX2UKGgGR0COkRYh+vyLaAdN6ANoCEdAqvZGH58BuHV9lChoBkdAkQVTRUm2LGgHTegDaAhHQKr9nQTmGM51fZQoaAZHQJXOOxPfsNVoB03oA2gIR0Cq/bVdonKGdX2UKGgGR0CXM/xSYPXkaAdN6ANoCEdAqwC4eq7yx3V9lChoBkdAguTV4gRsdmgHTegDaAhHQKsDGT101ZV1fZQoaAZHQJgs4Cr92oxoB03oA2gIR0CrDMMImgJ1dX2UKGgGR0CaiByGSIP9aAdN6ANoCEdAqwzbKvFFUnV9lChoBkdAnBJ+M+/xlWgHTegDaAhHQKsPtguyu6p1fZQoaAZHQJ3TdvXK8thoB03oA2gIR0CrEWel9BrvdX2UKGgGR0B3zNBeHBUJaAdNGQFoCEdAqxTR20Re1XV9lChoBkdAnl6fP1L8JmgHTegDaAhHQKsYtGG21D11fZQoaAZHQJ1SjzH0btJoB03oA2gIR0CrGM0u+RHPdX2UKGgGR0CchnhRIjGDaAdN6ANoCEdAqxu1+iJwbXV9lChoBkdAnUGghbGFSWgHTegDaAhHQKsiMjqv/zd1fZQoaAZHQJqma2jO9nNoB03oA2gIR0CrJ9Of/WDpdX2UKGgGR0CdHaeNkvsaaAdN6ANoCEdAqyfr9sJpnHV9lChoBkdAmzNF5Sm65GgHTegDaAhHQKsq7gUDdQB1fZQoaAZHQJfpGbutwJhoB03oA2gIR0CrMA6FmFrVdX2UKGgGR0CasyJEYwZgaAdN6ANoCEdAqzPuZkTYd3V9lChoBkdAmnOSRfWtl2gHTegDaAhHQKs0BypaRp11fZQoaAZHQJhl3VRUFStoB03oA2gIR0CrNvDfm9xqdX2UKGgGR0CYmQgwoLG8aAdN6ANoCEdAqzynKQq7RXV9lChoBkdAmeNVfAsTWWgHTegDaAhHQKtCieq7yx11fZQoaAZHQJlDnPZ7HABoB03oA2gIR0CrQq8A7xNJdX2UKGgGR0CZ982EkB0ZaAdN6ANoCEdAq0Y1HSWqtHV9lChoBkdAmb3SkoF3ZGgHTegDaAhHQKtLY92X9it1fZQoaAZHQJgojRnezldoB03oA2gIR0CrT03wsoUjdX2UKGgGR0CYmoJxNqQBaAdN6ANoCEdAq09ntnf2snV9lChoBkdAmdCkqUeMh2gHTegDaAhHQKtSUK4QSSN1fZQoaAZHQJiNqYx+KCRoB03oA2gIR0CrV3VdX1aodX2UKGgGR0CZGZxKxs2vaAdN6ANoCEdAq1yhNmDlHXV9lChoBkdAmXuJoCdSVGgHTegDaAhHQKtcxpxm03R1fZQoaAZHQJhUoBmwqy5oB03oA2gIR0CrYUrkS26TdX2UKGgGR0CXuhFHJ9y+aAdN6ANoCEdAq2ZenuRcNnV9lChoBkdAk3K8bBGhEmgHTegDaAhHQKtqNbMX7+F1fZQoaAZHQJmrybKA8SxoB03oA2gIR0Crak4U34sVdX2UKGgGR0CYjkG4qgAZaAdN6ANoCEdAq20x8+iaiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51d07086f3a2abc05804fa3590b7637b151fcf90d1af7eda4db1f5195d24bb6a
|
3 |
+
size 1101464
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1616.3954193814484, "std_reward": 104.93278192473528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T13:11:51.520782"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ca09b8a8b396c476df7dbf65fb848c1803f9ef2011124e9eb2ad7791c5fe13
|
3 |
+
size 2136
|