dmitry-np commited on
Commit
4d4d7fe
·
1 Parent(s): 50707b2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1554.56 +/- 75.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cacf1c904eea81278347483a490114cc2359def417f77b8dec80f5e7acb096e
3
+ size 129271
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6b2acf670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6b2acf700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6b2acf790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6b2acf820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb6b2acf8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb6b2acf940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6b2acf9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6b2acfa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb6b2acfaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6b2acfb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6b2acfc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6b2acfca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb6b2ac9cf0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676206184096837751,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": "./tensorboard",
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP/KFL++bac+f9wIP7lJlL6tLRo+dK4KP2oivj40ra++rDQ4P8InTr5HmWg+hEQWvkOSpL8AVxk+u16cPpNl+D6wIJo/KbfAvZrvCj+ifSa/AyXZvhfeOz/TmV+/jIC1Ow2xZT/9XQLA7cMVP035mb+LIU6/D3IWPypY3j4PEwC/8Y6Dvr1CoLxr8BQ/3WW5Psgioj7pCT6/qlGJPcr+HD46/oG/s1xWv/X6Qb78ghq+ynSJPldKEr8GpBs/2ZG3PU1jqL7hKoq/kkNBv7ofWb8NsWU/B1r7Pu3DFT+90FQ/OXRrPy4kJj/+0c0+Kib5Pk0q7T2eQXk/Qoy2vn+u8L9AcTk/Tf+cvuGLvT8dmEe92Nmev9rfDr586Ey90fUEwDf5lj6Wa9a+iVRcPjiQuj9aBga/8kqMPtL3iT2hxS2+DbFlP/1dAsDtwxU/TfmZvyPQPz9ia6s+m04IP2jtVT8PLVQ/WJRBPyKuUr5UXOi/sS4zP2jQxj0zZJI/lDrevsAKpb+dxjE+kWypPUvvFsDIcGc+D87tPnvjKT8nCz5AP4YhvwZoQD+I2ZO+3ikpvw2xZT/9XQLA7cMVP035mb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB7bLe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiJV1PQAAAACvCfi/AAAAADyfVrwAAAAABoYAQAAAAADqasW9AAAAAOqG4D8AAAAAPWuCPQAAAADdE+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAReIctgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBS1zDwAAAAAr3D7vwAAAABFQQi9AAAAAKTV3j8AAAAAzSi5PQAAAAA7pes/AAAAABrSAT4AAAAAjr7rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMV0tbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBFOym7AAAAADIv478AAAAA2ua0vQAAAABMqNw/AAAAAOZiF7wAAAAANKn1PwAAAADEZQo+AAAAAKAG478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdNoO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPxSPQAAAABsEwDAAAAAAJuj2TwAAAAABAryPwAAAAA6iXW9AAAAAN6k3j8AAAAAuq8vvQAAAADWjeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI+YGD3/PxCMAWyUTegDjAF0lEdAqxYanBLwnnV9lChoBkdAkBWov8IiT2gHTegDaAhHQKsYtmW+oLp1fZQoaAZHQJAciOgg5ipoB03oA2gIR0CrGQhjOLR8dX2UKGgGR0CLFPPyCnP3aAdN6ANoCEdAqxllRP420nV9lChoBkdAj7lCD28IzGgHTegDaAhHQKsjU7aqS5l1fZQoaAZHQI/w8G/vfCRoB03oA2gIR0CrJTu8K5TZdX2UKGgGR0CSP/7F85S4aAdN6ANoCEdAqyWFoakylHV9lChoBkdAjct6bF0gbWgHTegDaAhHQKsl5BpHqeN1fZQoaAZHQJJesUypJf9oB03oA2gIR0CrMaKFIuoQdX2UKGgGR0CRLv7GvOhTaAdN6ANoCEdAqzQA3m3fAXV9lChoBkdAj56NZ/0/W2gHTegDaAhHQKs0T3ueBhB1fZQoaAZHQJDsF63RXwNoB03oA2gIR0CrNKkp7TlUdX2UKGgGR0CQEf9qDbrUaAdN6ANoCEdAqz62P1ct5HV9lChoBkdAkbuNB0IToWgHTegDaAhHQKtAn544ZMt1fZQoaAZHQJHamRJVbRpoB03oA2gIR0CrQO+9rXUZdX2UKGgGR0CR4eRLsa86aAdN6ANoCEdAq0FKSHM2WXV9lChoBkdAlPeyrDIikmgHTegDaAhHQKtNVRekYXR1fZQoaAZHQIdVUJpnHvNoB03oA2gIR0CrT133g1m8dX2UKGgGR0CHA71+RYA9aAdN6ANoCEdAq0+rtG/etXV9lChoBkdAjdGilrM1TGgHTegDaAhHQKtQBV81Gb11fZQoaAZHQJJB4BOpKjBoB03oA2gIR0CrWeoRRMvidX2UKGgGR0CSxvcfNiYtaAdN6ANoCEdAq1viFAVwgnV9lChoBkdAkAzhsyi22GgHTegDaAhHQKtcM1lXiit1fZQoaAZHQJRMbm9xp+NoB03oA2gIR0CrXJPNmlImdX2UKGgGR0CN//vP1L8KaAdN6ANoCEdAq2jJnlGPP3V9lChoBkdAk4Lf5HmRvGgHTegDaAhHQKtqypZOi351fZQoaAZHQJGZsQe3hGZoB03oA2gIR0Craxh/y5I6dX2UKGgGR0CNA4ZpBX0YaAdN6ANoCEdAq2txbdJrcnV9lChoBkdAkKtUgGKQ72gHTegDaAhHQKt1TmEGqxV1fZQoaAZHQJHzpIGyHEdoB03oA2gIR0Crd0Zh8YygdX2UKGgGR0CRlWzbeuV5aAdN6ANoCEdAq3eV92HLzXV9lChoBkdAkmSqt1ZDA2gHTegDaAhHQKt38W9lEql1fZQoaAZHQJPGODTSb6RoB03oA2gIR0CrhDuU2UB5dX2UKGgGR0CTfNmQ8wHraAdN6ANoCEdAq4YfC/GlynV9lChoBkdAlmLOGCZnc2gHTegDaAhHQKuGc25QP7N1fZQoaAZHQJS/Ec6vJRxoB03oA2gIR0CrhsxTsIE9dX2UKGgGR0CT1EaxHG0eaAdN6ANoCEdAq5DeCsfaH3V9lChoBkdAk8QFPBSDRWgHTegDaAhHQKuSwwoLG711fZQoaAZHQJAoKJIlMRJoB03oA2gIR0CrkxN9x6v8dX2UKGgGR0CQi1fZElVtaAdN6ANoCEdAq5NrYEnss3V9lChoBkdAkZNASzw+dWgHTegDaAhHQKufjri2lVN1fZQoaAZHQJI0R/tpmEpoB03oA2gIR0CroYrdN34cdX2UKGgGR0CTWmQ2MsH0aAdN6ANoCEdAq6HaFwkxAXV9lChoBkdAkQqHko4MnmgHTegDaAhHQKuiMO4G2Th1fZQoaAZHQI0wM/MW43FoB03oA2gIR0CrrBYPoV2zdX2UKGgGR0COshTP0I1MaAdN6ANoCEdAq63+FzuF6HV9lChoBkdAlRa7FOwgT2gHTegDaAhHQKuuTksjFAF1fZQoaAZHQJQjuIznA7BoB03oA2gIR0CrrqmMn7YTdX2UKGgGR0CSbV5Xlr/LaAdN6ANoCEdAq7rEFKTSs3V9lChoBkdAdo4Ig/1QImgHTegDaAhHQKu8mz0pVjt1fZQoaAZHQJW7tJnQID5oB03oA2gIR0CrvOfHo5ggdX2UKGgGR0CTeB704BFNaAdN6ANoCEdAq71BYHPeHnV9lChoBkdAlXBZxR2r4mgHTegDaAhHQKvHH2dNFjN1fZQoaAZHQJZftsWO6upoB03oA2gIR0CryQSdFvycdX2UKGgGR0CYkMZ/0/W2aAdN6ANoCEdAq8lP003wTnV9lChoBkdAmD8cJlar3mgHTegDaAhHQKvJpwgDA8B1fZQoaAZHQJNnbscABDJoB03oA2gIR0Cr1d+vyLAIdX2UKGgGR0CSZvW3Sa3JaAdN6ANoCEdAq9fEniNsFnV9lChoBkdAkvH9x+8XemgHTegDaAhHQKvYFi5NGmV1fZQoaAZHQJYU9kc0cfhoB03oA2gIR0Cr2HQRXfZVdX2UKGgGR0CBBJuUliSaaAdN6ANoCEdAq+J4PmPo3nV9lChoBkdAlX6guIyj6GgHTegDaAhHQKvkZXjlxOt1fZQoaAZHQJKGUyAQQMBoB03oA2gIR0Cr5LXai9IxdX2UKGgGR0CVTX19v0iAaAdN6ANoCEdAq+UNbTtsvnV9lChoBkdAlReQVO9FnmgHTegDaAhHQKvxLKvmozh1fZQoaAZHQJQuKlxffGdoB03oA2gIR0Cr8xj2zv7WdX2UKGgGR0CUzTO0svqUaAdN6ANoCEdAq/Np+tr9EXV9lChoBkdAlx4JMpPRA2gHTegDaAhHQKvzxNX5nDl1fZQoaAZHQJX6gdLg4wRoB03oA2gIR0Cr/bbXYlIFdX2UKGgGR0CUh8OgxrSFaAdN6ANoCEdAq/+iZH/cWXV9lChoBkdAlhrpdjXnQ2gHTegDaAhHQKv/88Gs3hp1fZQoaAZHQJME/CaZx71oB03oA2gIR0CsAE++/QBxdX2UKGgGR0CXLW1v2oNvaAdN6ANoCEdArAyrnDBMz3V9lChoBkdAlP2H5JsfrGgHTegDaAhHQKwOnipeeFt1fZQoaAZHQJWAfy6MBIZoB03oA2gIR0CsDu0F0PpZdX2UKGgGR0CWfu9SuQp4aAdN6ANoCEdArA9HZ26kI3V9lChoBkdAlgIoNAkcCGgHTegDaAhHQKwZXlvqC6J1fZQoaAZHQJUVvhWHUMJoB03oA2gIR0CsG1P3ai9JdX2UKGgGR0CVr17TUiIMaAdN6ANoCEdArBulG7SRbXV9lChoBkdAlgSjP4VRDWgHTegDaAhHQKwcAg5imVJ1fZQoaAZHQJZjm0VrRBxoB03oA2gIR0CsKC+RHPNWdX2UKGgGR0CUnLtITXaraAdN6ANoCEdArCoa86FM7HV9lChoBkdAltingHeJpGgHTegDaAhHQKwqbJU5uIh1fZQoaAZHQJVHkdeY2KloB03oA2gIR0CsKsoVEd/8dX2UKGgGR0CW71zZpSJkaAdN6ANoCEdArDTWUyHmBHV9lChoBkdAleAtDYywfWgHTegDaAhHQKw2ys8PnSx1fZQoaAZHQJgeXkRzzVdoB03oA2gIR0CsNxjPWxyGdX2UKGgGR0CToWQBPsRhaAdN6ANoCEdArDduk+HJtHV9lChoBkdAmgM8yeqaPWgHTegDaAhHQKxD9NHH3lF1fZQoaAZHQJeYB0GNaQpoB03oA2gIR0CsRfE0aZQYdX2UKGgGR0CYaqTJQtSRaAdN6ANoCEdArEZAXyiEhHV9lChoBkdAmNkuiWVu8GgHTegDaAhHQKxGmFYdQwd1fZQoaAZHQJgqYS+QEIRoB03oA2gIR0CsUJKD0163dX2UKGgGR0CYQE3cHnloaAdN6ANoCEdArFJ7CBPKuHV9lChoBkdAleuNtl7MPmgHTegDaAhHQKxSxzH0btJ1fZQoaAZHQJiex2bG3nZoB03oA2gIR0CsUyIWpIczdX2UKGgGR0Ca3Q+ee4CqaAdN6ANoCEdArF8uUhV2inV9lChoBkdAlpu/SH/LkmgHTegDaAhHQKxhCOwPiDN1fZQoaAZHQJpZmxRl6JJoB03oA2gIR0CsYVIDxLCfdX2UKGgGR0CZRFd8iOebaAdN6ANoCEdArGGvYBeXzHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33cf84ac43ef50e0b3c28785c2aced58046d5f7650edd0367e12f503fc464fd7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3397c65f819f124b4930fe816d9e4b6a97e7970f77dbb0697c7dde1aea08c0cf
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6b2acf670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6b2acf700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6b2acf790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6b2acf820>", "_build": "<function ActorCriticPolicy._build at 0x7fb6b2acf8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6b2acf940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6b2acf9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6b2acfa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6b2acfaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6b2acfb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6b2acfc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6b2acfca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6b2ac9cf0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676206184096837751, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP/KFL++bac+f9wIP7lJlL6tLRo+dK4KP2oivj40ra++rDQ4P8InTr5HmWg+hEQWvkOSpL8AVxk+u16cPpNl+D6wIJo/KbfAvZrvCj+ifSa/AyXZvhfeOz/TmV+/jIC1Ow2xZT/9XQLA7cMVP035mb+LIU6/D3IWPypY3j4PEwC/8Y6Dvr1CoLxr8BQ/3WW5Psgioj7pCT6/qlGJPcr+HD46/oG/s1xWv/X6Qb78ghq+ynSJPldKEr8GpBs/2ZG3PU1jqL7hKoq/kkNBv7ofWb8NsWU/B1r7Pu3DFT+90FQ/OXRrPy4kJj/+0c0+Kib5Pk0q7T2eQXk/Qoy2vn+u8L9AcTk/Tf+cvuGLvT8dmEe92Nmev9rfDr586Ey90fUEwDf5lj6Wa9a+iVRcPjiQuj9aBga/8kqMPtL3iT2hxS2+DbFlP/1dAsDtwxU/TfmZvyPQPz9ia6s+m04IP2jtVT8PLVQ/WJRBPyKuUr5UXOi/sS4zP2jQxj0zZJI/lDrevsAKpb+dxjE+kWypPUvvFsDIcGc+D87tPnvjKT8nCz5AP4YhvwZoQD+I2ZO+3ikpvw2xZT/9XQLA7cMVP035mb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB7bLe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiJV1PQAAAACvCfi/AAAAADyfVrwAAAAABoYAQAAAAADqasW9AAAAAOqG4D8AAAAAPWuCPQAAAADdE+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAReIctgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBS1zDwAAAAAr3D7vwAAAABFQQi9AAAAAKTV3j8AAAAAzSi5PQAAAAA7pes/AAAAABrSAT4AAAAAjr7rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMV0tbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBFOym7AAAAADIv478AAAAA2ua0vQAAAABMqNw/AAAAAOZiF7wAAAAANKn1PwAAAADEZQo+AAAAAKAG478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdNoO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPxSPQAAAABsEwDAAAAAAJuj2TwAAAAABAryPwAAAAA6iXW9AAAAAN6k3j8AAAAAuq8vvQAAAADWjeu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI+YGD3/PxCMAWyUTegDjAF0lEdAqxYanBLwnnV9lChoBkdAkBWov8IiT2gHTegDaAhHQKsYtmW+oLp1fZQoaAZHQJAciOgg5ipoB03oA2gIR0CrGQhjOLR8dX2UKGgGR0CLFPPyCnP3aAdN6ANoCEdAqxllRP420nV9lChoBkdAj7lCD28IzGgHTegDaAhHQKsjU7aqS5l1fZQoaAZHQI/w8G/vfCRoB03oA2gIR0CrJTu8K5TZdX2UKGgGR0CSP/7F85S4aAdN6ANoCEdAqyWFoakylHV9lChoBkdAjct6bF0gbWgHTegDaAhHQKsl5BpHqeN1fZQoaAZHQJJesUypJf9oB03oA2gIR0CrMaKFIuoQdX2UKGgGR0CRLv7GvOhTaAdN6ANoCEdAqzQA3m3fAXV9lChoBkdAj56NZ/0/W2gHTegDaAhHQKs0T3ueBhB1fZQoaAZHQJDsF63RXwNoB03oA2gIR0CrNKkp7TlUdX2UKGgGR0CQEf9qDbrUaAdN6ANoCEdAqz62P1ct5HV9lChoBkdAkbuNB0IToWgHTegDaAhHQKtAn544ZMt1fZQoaAZHQJHamRJVbRpoB03oA2gIR0CrQO+9rXUZdX2UKGgGR0CR4eRLsa86aAdN6ANoCEdAq0FKSHM2WXV9lChoBkdAlPeyrDIikmgHTegDaAhHQKtNVRekYXR1fZQoaAZHQIdVUJpnHvNoB03oA2gIR0CrT133g1m8dX2UKGgGR0CHA71+RYA9aAdN6ANoCEdAq0+rtG/etXV9lChoBkdAjdGilrM1TGgHTegDaAhHQKtQBV81Gb11fZQoaAZHQJJB4BOpKjBoB03oA2gIR0CrWeoRRMvidX2UKGgGR0CSxvcfNiYtaAdN6ANoCEdAq1viFAVwgnV9lChoBkdAkAzhsyi22GgHTegDaAhHQKtcM1lXiit1fZQoaAZHQJRMbm9xp+NoB03oA2gIR0CrXJPNmlImdX2UKGgGR0CN//vP1L8KaAdN6ANoCEdAq2jJnlGPP3V9lChoBkdAk4Lf5HmRvGgHTegDaAhHQKtqypZOi351fZQoaAZHQJGZsQe3hGZoB03oA2gIR0Craxh/y5I6dX2UKGgGR0CNA4ZpBX0YaAdN6ANoCEdAq2txbdJrcnV9lChoBkdAkKtUgGKQ72gHTegDaAhHQKt1TmEGqxV1fZQoaAZHQJHzpIGyHEdoB03oA2gIR0Crd0Zh8YygdX2UKGgGR0CRlWzbeuV5aAdN6ANoCEdAq3eV92HLzXV9lChoBkdAkmSqt1ZDA2gHTegDaAhHQKt38W9lEql1fZQoaAZHQJPGODTSb6RoB03oA2gIR0CrhDuU2UB5dX2UKGgGR0CTfNmQ8wHraAdN6ANoCEdAq4YfC/GlynV9lChoBkdAlmLOGCZnc2gHTegDaAhHQKuGc25QP7N1fZQoaAZHQJS/Ec6vJRxoB03oA2gIR0CrhsxTsIE9dX2UKGgGR0CT1EaxHG0eaAdN6ANoCEdAq5DeCsfaH3V9lChoBkdAk8QFPBSDRWgHTegDaAhHQKuSwwoLG711fZQoaAZHQJAoKJIlMRJoB03oA2gIR0CrkxN9x6v8dX2UKGgGR0CQi1fZElVtaAdN6ANoCEdAq5NrYEnss3V9lChoBkdAkZNASzw+dWgHTegDaAhHQKufjri2lVN1fZQoaAZHQJI0R/tpmEpoB03oA2gIR0CroYrdN34cdX2UKGgGR0CTWmQ2MsH0aAdN6ANoCEdAq6HaFwkxAXV9lChoBkdAkQqHko4MnmgHTegDaAhHQKuiMO4G2Th1fZQoaAZHQI0wM/MW43FoB03oA2gIR0CrrBYPoV2zdX2UKGgGR0COshTP0I1MaAdN6ANoCEdAq63+FzuF6HV9lChoBkdAlRa7FOwgT2gHTegDaAhHQKuuTksjFAF1fZQoaAZHQJQjuIznA7BoB03oA2gIR0CrrqmMn7YTdX2UKGgGR0CSbV5Xlr/LaAdN6ANoCEdAq7rEFKTSs3V9lChoBkdAdo4Ig/1QImgHTegDaAhHQKu8mz0pVjt1fZQoaAZHQJW7tJnQID5oB03oA2gIR0CrvOfHo5ggdX2UKGgGR0CTeB704BFNaAdN6ANoCEdAq71BYHPeHnV9lChoBkdAlXBZxR2r4mgHTegDaAhHQKvHH2dNFjN1fZQoaAZHQJZftsWO6upoB03oA2gIR0CryQSdFvycdX2UKGgGR0CYkMZ/0/W2aAdN6ANoCEdAq8lP003wTnV9lChoBkdAmD8cJlar3mgHTegDaAhHQKvJpwgDA8B1fZQoaAZHQJNnbscABDJoB03oA2gIR0Cr1d+vyLAIdX2UKGgGR0CSZvW3Sa3JaAdN6ANoCEdAq9fEniNsFnV9lChoBkdAkvH9x+8XemgHTegDaAhHQKvYFi5NGmV1fZQoaAZHQJYU9kc0cfhoB03oA2gIR0Cr2HQRXfZVdX2UKGgGR0CBBJuUliSaaAdN6ANoCEdAq+J4PmPo3nV9lChoBkdAlX6guIyj6GgHTegDaAhHQKvkZXjlxOt1fZQoaAZHQJKGUyAQQMBoB03oA2gIR0Cr5LXai9IxdX2UKGgGR0CVTX19v0iAaAdN6ANoCEdAq+UNbTtsvnV9lChoBkdAlReQVO9FnmgHTegDaAhHQKvxLKvmozh1fZQoaAZHQJQuKlxffGdoB03oA2gIR0Cr8xj2zv7WdX2UKGgGR0CUzTO0svqUaAdN6ANoCEdAq/Np+tr9EXV9lChoBkdAlx4JMpPRA2gHTegDaAhHQKvzxNX5nDl1fZQoaAZHQJX6gdLg4wRoB03oA2gIR0Cr/bbXYlIFdX2UKGgGR0CUh8OgxrSFaAdN6ANoCEdAq/+iZH/cWXV9lChoBkdAlhrpdjXnQ2gHTegDaAhHQKv/88Gs3hp1fZQoaAZHQJME/CaZx71oB03oA2gIR0CsAE++/QBxdX2UKGgGR0CXLW1v2oNvaAdN6ANoCEdArAyrnDBMz3V9lChoBkdAlP2H5JsfrGgHTegDaAhHQKwOnipeeFt1fZQoaAZHQJWAfy6MBIZoB03oA2gIR0CsDu0F0PpZdX2UKGgGR0CWfu9SuQp4aAdN6ANoCEdArA9HZ26kI3V9lChoBkdAlgIoNAkcCGgHTegDaAhHQKwZXlvqC6J1fZQoaAZHQJUVvhWHUMJoB03oA2gIR0CsG1P3ai9JdX2UKGgGR0CVr17TUiIMaAdN6ANoCEdArBulG7SRbXV9lChoBkdAlgSjP4VRDWgHTegDaAhHQKwcAg5imVJ1fZQoaAZHQJZjm0VrRBxoB03oA2gIR0CsKC+RHPNWdX2UKGgGR0CUnLtITXaraAdN6ANoCEdArCoa86FM7HV9lChoBkdAltingHeJpGgHTegDaAhHQKwqbJU5uIh1fZQoaAZHQJVHkdeY2KloB03oA2gIR0CsKsoVEd/8dX2UKGgGR0CW71zZpSJkaAdN6ANoCEdArDTWUyHmBHV9lChoBkdAleAtDYywfWgHTegDaAhHQKw2ys8PnSx1fZQoaAZHQJgeXkRzzVdoB03oA2gIR0CsNxjPWxyGdX2UKGgGR0CToWQBPsRhaAdN6ANoCEdArDduk+HJtHV9lChoBkdAmgM8yeqaPWgHTegDaAhHQKxD9NHH3lF1fZQoaAZHQJeYB0GNaQpoB03oA2gIR0CsRfE0aZQYdX2UKGgGR0CYaqTJQtSRaAdN6ANoCEdArEZAXyiEhHV9lChoBkdAmNkuiWVu8GgHTegDaAhHQKxGmFYdQwd1fZQoaAZHQJgqYS+QEIRoB03oA2gIR0CsUJKD0163dX2UKGgGR0CYQE3cHnloaAdN6ANoCEdArFJ7CBPKuHV9lChoBkdAleuNtl7MPmgHTegDaAhHQKxSxzH0btJ1fZQoaAZHQJiex2bG3nZoB03oA2gIR0CsUyIWpIczdX2UKGgGR0Ca3Q+ee4CqaAdN6ANoCEdArF8uUhV2inV9lChoBkdAlpu/SH/LkmgHTegDaAhHQKxhCOwPiDN1fZQoaAZHQJpZmxRl6JJoB03oA2gIR0CsYVIDxLCfdX2UKGgGR0CZRFd8iOebaAdN6ANoCEdArGGvYBeXzHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (957 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1554.5621825277806, "std_reward": 75.889414160603, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T13:51:01.887983"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df69c0e4f50faa1763bfff02737d4e439c0ad67734a3377ad4d956da86a9f603
3
+ size 2521