File size: 1,795 Bytes
3902343 9c319fd 3902343 9c319fd 3902343 9c319fd 3902343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ft1500_norm300
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ft1500_norm300
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0940
- Mse: 4.3760
- Mae: 1.4084
- R2: 0.4625
- Accuracy: 0.3517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:|
| 0.7424 | 1.0 | 3122 | 1.1071 | 4.4286 | 1.4098 | 0.4561 | 0.3338 |
| 0.5038 | 2.0 | 6244 | 1.1794 | 4.7177 | 1.4140 | 0.4205 | 0.3677 |
| 0.356 | 3.0 | 9366 | 1.0717 | 4.2866 | 1.3852 | 0.4735 | 0.3581 |
| 0.2293 | 4.0 | 12488 | 1.0940 | 4.3760 | 1.4084 | 0.4625 | 0.3517 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|