train: ppo LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.07 +/- 16.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f34a4bf0280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f34a4bf0310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f34a4bf03a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f34a4bf0430>", "_build": "<function ActorCriticPolicy._build at 0x7f34a4bf04c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f34a4bf0550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f34a4bf05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f34a4bf0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f34a4bf0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f34a4bf0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f34a4bf0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f34a4bf08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f34a4bea840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677793276755290215, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABquMD3h8pG64VamuIlgezERQQ27hIy9NwAAgD8AAIA/mjyXvZ71ND+cv6O6QK/HvsEflr3dxiM8AAAAAAAAAACgIQ4+Bcv2u049OTv6gvC5eMhFvQWhu7oAAAAAAACAP83cBT3x5ow/a+3ou56y6L4r4Ug9HGG0PAAAAAAAAAAAZggMvni4+T0N6009VLxfvmuTEb50iaQ9AAAAAAAAAAAAts89CzwjPzv7hzwaad2+ufYtPLpYkL0AAAAAAAAAAI03Vj53MYE+yavMvat5e76JXAk9g/30vQAAAAAAAAAAgPcsvTi2pruuqJu7gpkCPYtRZTvD3Lg3AACAPwAAgD+zxu09sJKqPz5bJD+QUNa+0723PfBqfT4AAAAAAAAAAADONL00Hwk/6ECAvT+YuL5byAO9YOW6PAAAAAAAAAAAhkOTPgMsmT9nOgM/o3HyvjA+wj5ISyc+AAAAAAAAAABtbja+49F2P8wSl71Ql+O+mnJGviNZpDwAAAAAAAAAAGahkzyVjU8/sKniun/0w76UI6k8daYRvQAAAAAAAAAA80DjPff1dz+h0DE+5r77vhWWGz7g2c89AAAAAAAAAAAAJd889qRnuq50Zrkij1O0AssSuQpThzgAAIA/AACAP2YQibxc2Ec7wwH1Pa2cM746JKk64gZdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9XnaitJckCUhpRSlIwBbJRNfAGMAXSUR0CTgYPczqKQdX2UKGgGaAloD0MIUu3T8VhkckCUhpRSlGgVTUUDaBZHQJOCUeA/cFh1fZQoaAZoCWgPQwigibDhqZhyQJSGlFKUaBVNIwFoFkdAk4Ov7JnxrnV9lChoBmgJaA9DCLyTT49tj29AlIaUUpRoFU0SAWgWR0CThNeg+QlsdX2UKGgGaAloD0MIBBxCldpgcUCUhpRSlGgVTXUBaBZHQJOFgfhddE91fZQoaAZoCWgPQwi3skRnGaZyQJSGlFKUaBVNkgFoFkdAk4WL+DOC5HV9lChoBmgJaA9DCPYksDlHnHFAlIaUUpRoFU0wAWgWR0CThclwcYIjdX2UKGgGaAloD0MIRNsxdVcac0CUhpRSlGgVTQsBaBZHQJOGRj2Bas91fZQoaAZoCWgPQwgNjpJXp75wQJSGlFKUaBVNCAFoFkdAk4aShrWRR3V9lChoBmgJaA9DCAsIrYcvrHJAlIaUUpRoFU0NAWgWR0CThpAtFrmAdX2UKGgGaAloD0MI/KiG/R5PcUCUhpRSlGgVTQEBaBZHQJOHaD9Oymh1fZQoaAZoCWgPQwh0sz9QLjFwQJSGlFKUaBVL+WgWR0CTh38Gs3hodX2UKGgGaAloD0MI0/cagmMNcECUhpRSlGgVTW4BaBZHQJOIM31jAi51fZQoaAZoCWgPQwj4+8VsyZdwQJSGlFKUaBVNawFoFkdAk4n4AS39aXV9lChoBmgJaA9DCL1UbMyr9XBAlIaUUpRoFU0sAWgWR0CTirnJDE3sdX2UKGgGaAloD0MIBDkoYeaLcECUhpRSlGgVTRUBaBZHQJOKz7DVH4J1fZQoaAZoCWgPQwjFru3tliNzQJSGlFKUaBVNfgFoFkdAk4reDBdld3V9lChoBmgJaA9DCDElkuhltkFAlIaUUpRoFUvRaBZHQJOK+XokiUx1fZQoaAZoCWgPQwjrAIi7+uFvQJSGlFKUaBVNPwFoFkdAk41WU8mrsHV9lChoBmgJaA9DCBUfn5Bd3XBAlIaUUpRoFU0DAWgWR0CTjkI4lyBDdX2UKGgGaAloD0MITN2VXXBecUCUhpRSlGgVTTYBaBZHQJOO2fHxSYR1fZQoaAZoCWgPQwhBtixfFyZyQJSGlFKUaBVNRwJoFkdAk4+YSDh99nV9lChoBmgJaA9DCNv3qL8ednFAlIaUUpRoFU0JAWgWR0CTj6tMPBi1dX2UKGgGaAloD0MIBVPNrCW5bkCUhpRSlGgVTVIBaBZHQJOP1jUd7v51fZQoaAZoCWgPQwgCDwwg/GJuQJSGlFKUaBVNNQFoFkdAk5FSElE7XHV9lChoBmgJaA9DCM1bdR0qtHBAlIaUUpRoFU11AWgWR0CTkbc81XNkdX2UKGgGaAloD0MIGlJF8SqPcUCUhpRSlGgVS/5oFkdAk5MDtXxOL3V9lChoBmgJaA9DCIhnCTKCgXFAlIaUUpRoFU2LAWgWR0CTk17laKUFdX2UKGgGaAloD0MISG5Nuq20cECUhpRSlGgVTRoBaBZHQJOVU0EX+ER1fZQoaAZoCWgPQwhjsyPV9yFwQJSGlFKUaBVNLgFoFkdAk5YZfx+a0HV9lChoBmgJaA9DCOWaApmdDXBAlIaUUpRoFU0pAWgWR0CTljpV0cOtdX2UKGgGaAloD0MIuvQvSeUNc0CUhpRSlGgVTYsBaBZHQJOWWsYEW691fZQoaAZoCWgPQwjgLZCgeNRvQJSGlFKUaBVL92gWR0CTmnMPjGT+dX2UKGgGaAloD0MIJJf/kL6jcUCUhpRSlGgVTR0BaBZHQJOagzbeuV51fZQoaAZoCWgPQwgbZJKR87tyQJSGlFKUaBVNOgFoFkdAk5qdhuwX7HV9lChoBmgJaA9DCAowLH++o3JAlIaUUpRoFU2WAWgWR0CTmyCwKSgXdX2UKGgGaAloD0MIXFfMCO/9bECUhpRSlGgVS/9oFkdAk5srcGkeqHV9lChoBmgJaA9DCPcgBORL229AlIaUUpRoFU0hAWgWR0CTnIQUHpr2dX2UKGgGaAloD0MI18IstHOVbECUhpRSlGgVTVEBaBZHQJOduj+Jgst1fZQoaAZoCWgPQwgC02ndBqhuQJSGlFKUaBVNDwFoFkdAk538W9DhL3V9lChoBmgJaA9DCNz2Pepv/nBAlIaUUpRoFU03AWgWR0CTn3e/Ho5hdX2UKGgGaAloD0MIJclzfZ8hcECUhpRSlGgVTSoBaBZHQJOgq6BiCrd1fZQoaAZoCWgPQwgXnwJg/AFxQJSGlFKUaBVL/mgWR0CToSYTTOPedX2UKGgGaAloD0MI1PIDV3nxbUCUhpRSlGgVTUEBaBZHQJOiFwqAjIJ1fZQoaAZoCWgPQwjpgY/BCrJwQJSGlFKUaBVNHAFoFkdAk7eAsf7rLXV9lChoBmgJaA9DCBwJNNiUtHJAlIaUUpRoFU0nAWgWR0CTt8AHmig1dX2UKGgGaAloD0MImPijqPO2cECUhpRSlGgVTf4CaBZHQJO4ZJd0JWx1fZQoaAZoCWgPQwhJ2o0+pnlyQJSGlFKUaBVL/GgWR0CTuVKziS7odX2UKGgGaAloD0MIMuVDULVkb0CUhpRSlGgVTV8BaBZHQJO5j/aQFLZ1fZQoaAZoCWgPQwilFHR7SRZzQJSGlFKUaBVL/mgWR0CTubgYP5HmdX2UKGgGaAloD0MItDo5Q7FgckCUhpRSlGgVTRMBaBZHQJO56BUaQ3h1fZQoaAZoCWgPQwgC2IAIcX5wQJSGlFKUaBVNKgFoFkdAk7sM7hegMHV9lChoBmgJaA9DCMMQOX29jnBAlIaUUpRoFU08AWgWR0CTuy/yGzrvdX2UKGgGaAloD0MIfcwHBLolckCUhpRSlGgVS/1oFkdAk7t4lhPTHHV9lChoBmgJaA9DCKM6Hcj6ZnBAlIaUUpRoFU0cAWgWR0CTu3gBLf1pdX2UKGgGaAloD0MIkx6GVqcmcUCUhpRSlGgVTSIBaBZHQJO8SaiKziV1fZQoaAZoCWgPQwgdk8X9R+RtQJSGlFKUaBVNAQFoFkdAk7xhLf1pTXV9lChoBmgJaA9DCFYOLbKdFG5AlIaUUpRoFU0IAWgWR0CTvYMHryDqdX2UKGgGaAloD0MITWn9LQHxbECUhpRSlGgVS/toFkdAk76cGX5WR3V9lChoBmgJaA9DCBB39SqyOnBAlIaUUpRoFU0dAWgWR0CTvr6Q/5ckdX2UKGgGaAloD0MI3NWryGjvcUCUhpRSlGgVTRkBaBZHQJPAc1WKdhB1fZQoaAZoCWgPQwhHyhZJuw1GQJSGlFKUaBVLw2gWR0CTwJM8ox5+dX2UKGgGaAloD0MIU8prJfRLckCUhpRSlGgVS/RoFkdAk8Drg88s+XV9lChoBmgJaA9DCMsuGFxzHnBAlIaUUpRoFU0WAWgWR0CTwadNFjNIdX2UKGgGaAloD0MI4gLQKF0wcECUhpRSlGgVTSABaBZHQJPBvC79Q411fZQoaAZoCWgPQwhIpdjRuEZyQJSGlFKUaBVNXAFoFkdAk8Hm6f8Mu3V9lChoBmgJaA9DCMsr19tmCnBAlIaUUpRoFU0bAWgWR0CTwfn6Eal2dX2UKGgGaAloD0MIAvBPqdJycUCUhpRSlGgVTQsBaBZHQJPDJ6MR6GB1fZQoaAZoCWgPQwhrRDAOLpxvQJSGlFKUaBVNFwFoFkdAk8ODhxYJV3V9lChoBmgJaA9DCIknu5kRLnFAlIaUUpRoFU30AWgWR0CTxD1ie/YbdX2UKGgGaAloD0MIJAwDllwNUkCUhpRSlGgVS+ZoFkdAk8RkI9kjHHV9lChoBmgJaA9DCHpuoSuRpW9AlIaUUpRoFU1CAWgWR0CTxHqC6H0sdX2UKGgGaAloD0MIP6phv+dGcECUhpRSlGgVTSIBaBZHQJPEvyPMjeN1fZQoaAZoCWgPQwj3cwry87FxQJSGlFKUaBVNIQFoFkdAk8TNdVvMr3V9lChoBmgJaA9DCOI+cmtSpHBAlIaUUpRoFUvzaBZHQJPFnUwztTl1fZQoaAZoCWgPQwjPvBx23xFxQJSGlFKUaBVNHAFoFkdAk8bPwd8zAXV9lChoBmgJaA9DCDTz5JpCJHJAlIaUUpRoFUvyaBZHQJPHNXlr/Kh1fZQoaAZoCWgPQwiVgQNaelJxQJSGlFKUaBVNEgFoFkdAk8gvDk2gnXV9lChoBmgJaA9DCMeb/Bbdz3FAlIaUUpRoFU0aAWgWR0CTyW3hn8KpdX2UKGgGaAloD0MIKlYNwpxjcUCUhpRSlGgVTTMBaBZHQJPJh99c8kl1fZQoaAZoCWgPQwjHn6hsWNdyQJSGlFKUaBVNPAFoFkdAk8qaiKziTHV9lChoBmgJaA9DCIqRJXOswnJAlIaUUpRoFU03AWgWR0CTyp+x4Y78dX2UKGgGaAloD0MIYr8n1ilGckCUhpRSlGgVS+BoFkdAk8q8FEAo5XV9lChoBmgJaA9DCOAO1CkPPnFAlIaUUpRoFUvmaBZHQJPLQaisXBR1fZQoaAZoCWgPQwjaVx6kJ4xuQJSGlFKUaBVNNgFoFkdAk8wNy5qdpnV9lChoBmgJaA9DCCdr1EP0THFAlIaUUpRoFU0tAWgWR0CTzmGoJiRXdX2UKGgGaAloD0MIFtwPeOCJckCUhpRSlGgVTUEBaBZHQJPOiSZBsyl1fZQoaAZoCWgPQwgNHNDSlUpwQJSGlFKUaBVNTAFoFkdAk87YJ7b+LnV9lChoBmgJaA9DCJAwDFjyunBAlIaUUpRoFU0hAWgWR0CTz2Yht+CsdX2UKGgGaAloD0MIhbNby6T5ckCUhpRSlGgVTTABaBZHQJPSIN3GGVR1fZQoaAZoCWgPQwhHVn4ZjGNzQJSGlFKUaBVNMQFoFkdAk9LpX6qKg3V9lChoBmgJaA9DCK702mys4WxAlIaUUpRoFU0NAWgWR0CT1YaPS2H+dX2UKGgGaAloD0MItcTKaOTxbUCUhpRSlGgVTfMBaBZHQJPWLj2i+L51fZQoaAZoCWgPQwgLtDukGNpCQJSGlFKUaBVL6WgWR0CT1okHlfZ3dX2UKGgGaAloD0MIQgddwmFVcUCUhpRSlGgVTQYBaBZHQJPXDbJwKjV1fZQoaAZoCWgPQwiWB+kp8rxtQJSGlFKUaBVNVAFoFkdAk9cebd8ArHV9lChoBmgJaA9DCN21hHzQoG9AlIaUUpRoFU0YAWgWR0CT2EB0p3HJdX2UKGgGaAloD0MI1T4djxk2ckCUhpRSlGgVTRsBaBZHQJPYPzPKMeh1fZQoaAZoCWgPQwh3SZwVkTNxQJSGlFKUaBVNQwFoFkdAk9hhdIGyHHV9lChoBmgJaA9DCCVa8nja4G9AlIaUUpRoFU0OAWgWR0CT2ZRfnfVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a0f8d784f4f3a83909e671fcb962cb55c652e1f683ce9641653a8581e22e4dd
|
3 |
+
size 147400
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f34a4bf0280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f34a4bf0310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f34a4bf03a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f34a4bf0430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f34a4bf04c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f34a4bf0550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f34a4bf05e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f34a4bf0670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f34a4bf0700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f34a4bf0790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f34a4bf0820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f34a4bf08b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f34a4bea840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677793276755290215,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABquMD3h8pG64VamuIlgezERQQ27hIy9NwAAgD8AAIA/mjyXvZ71ND+cv6O6QK/HvsEflr3dxiM8AAAAAAAAAACgIQ4+Bcv2u049OTv6gvC5eMhFvQWhu7oAAAAAAACAP83cBT3x5ow/a+3ou56y6L4r4Ug9HGG0PAAAAAAAAAAAZggMvni4+T0N6009VLxfvmuTEb50iaQ9AAAAAAAAAAAAts89CzwjPzv7hzwaad2+ufYtPLpYkL0AAAAAAAAAAI03Vj53MYE+yavMvat5e76JXAk9g/30vQAAAAAAAAAAgPcsvTi2pruuqJu7gpkCPYtRZTvD3Lg3AACAPwAAgD+zxu09sJKqPz5bJD+QUNa+0723PfBqfT4AAAAAAAAAAADONL00Hwk/6ECAvT+YuL5byAO9YOW6PAAAAAAAAAAAhkOTPgMsmT9nOgM/o3HyvjA+wj5ISyc+AAAAAAAAAABtbja+49F2P8wSl71Ql+O+mnJGviNZpDwAAAAAAAAAAGahkzyVjU8/sKniun/0w76UI6k8daYRvQAAAAAAAAAA80DjPff1dz+h0DE+5r77vhWWGz7g2c89AAAAAAAAAAAAJd889qRnuq50Zrkij1O0AssSuQpThzgAAIA/AACAP2YQibxc2Ec7wwH1Pa2cM746JKk64gZdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9XnaitJckCUhpRSlIwBbJRNfAGMAXSUR0CTgYPczqKQdX2UKGgGaAloD0MIUu3T8VhkckCUhpRSlGgVTUUDaBZHQJOCUeA/cFh1fZQoaAZoCWgPQwigibDhqZhyQJSGlFKUaBVNIwFoFkdAk4Ov7JnxrnV9lChoBmgJaA9DCLyTT49tj29AlIaUUpRoFU0SAWgWR0CThNeg+QlsdX2UKGgGaAloD0MIBBxCldpgcUCUhpRSlGgVTXUBaBZHQJOFgfhddE91fZQoaAZoCWgPQwi3skRnGaZyQJSGlFKUaBVNkgFoFkdAk4WL+DOC5HV9lChoBmgJaA9DCPYksDlHnHFAlIaUUpRoFU0wAWgWR0CThclwcYIjdX2UKGgGaAloD0MIRNsxdVcac0CUhpRSlGgVTQsBaBZHQJOGRj2Bas91fZQoaAZoCWgPQwgNjpJXp75wQJSGlFKUaBVNCAFoFkdAk4aShrWRR3V9lChoBmgJaA9DCAsIrYcvrHJAlIaUUpRoFU0NAWgWR0CThpAtFrmAdX2UKGgGaAloD0MI/KiG/R5PcUCUhpRSlGgVTQEBaBZHQJOHaD9Oymh1fZQoaAZoCWgPQwh0sz9QLjFwQJSGlFKUaBVL+WgWR0CTh38Gs3hodX2UKGgGaAloD0MI0/cagmMNcECUhpRSlGgVTW4BaBZHQJOIM31jAi51fZQoaAZoCWgPQwj4+8VsyZdwQJSGlFKUaBVNawFoFkdAk4n4AS39aXV9lChoBmgJaA9DCL1UbMyr9XBAlIaUUpRoFU0sAWgWR0CTirnJDE3sdX2UKGgGaAloD0MIBDkoYeaLcECUhpRSlGgVTRUBaBZHQJOKz7DVH4J1fZQoaAZoCWgPQwjFru3tliNzQJSGlFKUaBVNfgFoFkdAk4reDBdld3V9lChoBmgJaA9DCDElkuhltkFAlIaUUpRoFUvRaBZHQJOK+XokiUx1fZQoaAZoCWgPQwjrAIi7+uFvQJSGlFKUaBVNPwFoFkdAk41WU8mrsHV9lChoBmgJaA9DCBUfn5Bd3XBAlIaUUpRoFU0DAWgWR0CTjkI4lyBDdX2UKGgGaAloD0MITN2VXXBecUCUhpRSlGgVTTYBaBZHQJOO2fHxSYR1fZQoaAZoCWgPQwhBtixfFyZyQJSGlFKUaBVNRwJoFkdAk4+YSDh99nV9lChoBmgJaA9DCNv3qL8ednFAlIaUUpRoFU0JAWgWR0CTj6tMPBi1dX2UKGgGaAloD0MIBVPNrCW5bkCUhpRSlGgVTVIBaBZHQJOP1jUd7v51fZQoaAZoCWgPQwgCDwwg/GJuQJSGlFKUaBVNNQFoFkdAk5FSElE7XHV9lChoBmgJaA9DCM1bdR0qtHBAlIaUUpRoFU11AWgWR0CTkbc81XNkdX2UKGgGaAloD0MIGlJF8SqPcUCUhpRSlGgVS/5oFkdAk5MDtXxOL3V9lChoBmgJaA9DCIhnCTKCgXFAlIaUUpRoFU2LAWgWR0CTk17laKUFdX2UKGgGaAloD0MISG5Nuq20cECUhpRSlGgVTRoBaBZHQJOVU0EX+ER1fZQoaAZoCWgPQwhjsyPV9yFwQJSGlFKUaBVNLgFoFkdAk5YZfx+a0HV9lChoBmgJaA9DCOWaApmdDXBAlIaUUpRoFU0pAWgWR0CTljpV0cOtdX2UKGgGaAloD0MIuvQvSeUNc0CUhpRSlGgVTYsBaBZHQJOWWsYEW691fZQoaAZoCWgPQwjgLZCgeNRvQJSGlFKUaBVL92gWR0CTmnMPjGT+dX2UKGgGaAloD0MIJJf/kL6jcUCUhpRSlGgVTR0BaBZHQJOagzbeuV51fZQoaAZoCWgPQwgbZJKR87tyQJSGlFKUaBVNOgFoFkdAk5qdhuwX7HV9lChoBmgJaA9DCAowLH++o3JAlIaUUpRoFU2WAWgWR0CTmyCwKSgXdX2UKGgGaAloD0MIXFfMCO/9bECUhpRSlGgVS/9oFkdAk5srcGkeqHV9lChoBmgJaA9DCPcgBORL229AlIaUUpRoFU0hAWgWR0CTnIQUHpr2dX2UKGgGaAloD0MI18IstHOVbECUhpRSlGgVTVEBaBZHQJOduj+Jgst1fZQoaAZoCWgPQwgC02ndBqhuQJSGlFKUaBVNDwFoFkdAk538W9DhL3V9lChoBmgJaA9DCNz2Pepv/nBAlIaUUpRoFU03AWgWR0CTn3e/Ho5hdX2UKGgGaAloD0MIJclzfZ8hcECUhpRSlGgVTSoBaBZHQJOgq6BiCrd1fZQoaAZoCWgPQwgXnwJg/AFxQJSGlFKUaBVL/mgWR0CToSYTTOPedX2UKGgGaAloD0MI1PIDV3nxbUCUhpRSlGgVTUEBaBZHQJOiFwqAjIJ1fZQoaAZoCWgPQwjpgY/BCrJwQJSGlFKUaBVNHAFoFkdAk7eAsf7rLXV9lChoBmgJaA9DCBwJNNiUtHJAlIaUUpRoFU0nAWgWR0CTt8AHmig1dX2UKGgGaAloD0MImPijqPO2cECUhpRSlGgVTf4CaBZHQJO4ZJd0JWx1fZQoaAZoCWgPQwhJ2o0+pnlyQJSGlFKUaBVL/GgWR0CTuVKziS7odX2UKGgGaAloD0MIMuVDULVkb0CUhpRSlGgVTV8BaBZHQJO5j/aQFLZ1fZQoaAZoCWgPQwilFHR7SRZzQJSGlFKUaBVL/mgWR0CTubgYP5HmdX2UKGgGaAloD0MItDo5Q7FgckCUhpRSlGgVTRMBaBZHQJO56BUaQ3h1fZQoaAZoCWgPQwgC2IAIcX5wQJSGlFKUaBVNKgFoFkdAk7sM7hegMHV9lChoBmgJaA9DCMMQOX29jnBAlIaUUpRoFU08AWgWR0CTuy/yGzrvdX2UKGgGaAloD0MIfcwHBLolckCUhpRSlGgVS/1oFkdAk7t4lhPTHHV9lChoBmgJaA9DCKM6Hcj6ZnBAlIaUUpRoFU0cAWgWR0CTu3gBLf1pdX2UKGgGaAloD0MIkx6GVqcmcUCUhpRSlGgVTSIBaBZHQJO8SaiKziV1fZQoaAZoCWgPQwgdk8X9R+RtQJSGlFKUaBVNAQFoFkdAk7xhLf1pTXV9lChoBmgJaA9DCFYOLbKdFG5AlIaUUpRoFU0IAWgWR0CTvYMHryDqdX2UKGgGaAloD0MITWn9LQHxbECUhpRSlGgVS/toFkdAk76cGX5WR3V9lChoBmgJaA9DCBB39SqyOnBAlIaUUpRoFU0dAWgWR0CTvr6Q/5ckdX2UKGgGaAloD0MI3NWryGjvcUCUhpRSlGgVTRkBaBZHQJPAc1WKdhB1fZQoaAZoCWgPQwhHyhZJuw1GQJSGlFKUaBVLw2gWR0CTwJM8ox5+dX2UKGgGaAloD0MIU8prJfRLckCUhpRSlGgVS/RoFkdAk8Drg88s+XV9lChoBmgJaA9DCMsuGFxzHnBAlIaUUpRoFU0WAWgWR0CTwadNFjNIdX2UKGgGaAloD0MI4gLQKF0wcECUhpRSlGgVTSABaBZHQJPBvC79Q411fZQoaAZoCWgPQwhIpdjRuEZyQJSGlFKUaBVNXAFoFkdAk8Hm6f8Mu3V9lChoBmgJaA9DCMsr19tmCnBAlIaUUpRoFU0bAWgWR0CTwfn6Eal2dX2UKGgGaAloD0MIAvBPqdJycUCUhpRSlGgVTQsBaBZHQJPDJ6MR6GB1fZQoaAZoCWgPQwhrRDAOLpxvQJSGlFKUaBVNFwFoFkdAk8ODhxYJV3V9lChoBmgJaA9DCIknu5kRLnFAlIaUUpRoFU30AWgWR0CTxD1ie/YbdX2UKGgGaAloD0MIJAwDllwNUkCUhpRSlGgVS+ZoFkdAk8RkI9kjHHV9lChoBmgJaA9DCHpuoSuRpW9AlIaUUpRoFU1CAWgWR0CTxHqC6H0sdX2UKGgGaAloD0MIP6phv+dGcECUhpRSlGgVTSIBaBZHQJPEvyPMjeN1fZQoaAZoCWgPQwj3cwry87FxQJSGlFKUaBVNIQFoFkdAk8TNdVvMr3V9lChoBmgJaA9DCOI+cmtSpHBAlIaUUpRoFUvzaBZHQJPFnUwztTl1fZQoaAZoCWgPQwjPvBx23xFxQJSGlFKUaBVNHAFoFkdAk8bPwd8zAXV9lChoBmgJaA9DCDTz5JpCJHJAlIaUUpRoFUvyaBZHQJPHNXlr/Kh1fZQoaAZoCWgPQwiVgQNaelJxQJSGlFKUaBVNEgFoFkdAk8gvDk2gnXV9lChoBmgJaA9DCMeb/Bbdz3FAlIaUUpRoFU0aAWgWR0CTyW3hn8KpdX2UKGgGaAloD0MIKlYNwpxjcUCUhpRSlGgVTTMBaBZHQJPJh99c8kl1fZQoaAZoCWgPQwjHn6hsWNdyQJSGlFKUaBVNPAFoFkdAk8qaiKziTHV9lChoBmgJaA9DCIqRJXOswnJAlIaUUpRoFU03AWgWR0CTyp+x4Y78dX2UKGgGaAloD0MIYr8n1ilGckCUhpRSlGgVS+BoFkdAk8q8FEAo5XV9lChoBmgJaA9DCOAO1CkPPnFAlIaUUpRoFUvmaBZHQJPLQaisXBR1fZQoaAZoCWgPQwjaVx6kJ4xuQJSGlFKUaBVNNgFoFkdAk8wNy5qdpnV9lChoBmgJaA9DCCdr1EP0THFAlIaUUpRoFU0tAWgWR0CTzmGoJiRXdX2UKGgGaAloD0MIFtwPeOCJckCUhpRSlGgVTUEBaBZHQJPOiSZBsyl1fZQoaAZoCWgPQwgNHNDSlUpwQJSGlFKUaBVNTAFoFkdAk87YJ7b+LnV9lChoBmgJaA9DCJAwDFjyunBAlIaUUpRoFU0hAWgWR0CTz2Yht+CsdX2UKGgGaAloD0MIhbNby6T5ckCUhpRSlGgVTTABaBZHQJPSIN3GGVR1fZQoaAZoCWgPQwhHVn4ZjGNzQJSGlFKUaBVNMQFoFkdAk9LpX6qKg3V9lChoBmgJaA9DCK702mys4WxAlIaUUpRoFU0NAWgWR0CT1YaPS2H+dX2UKGgGaAloD0MItcTKaOTxbUCUhpRSlGgVTfMBaBZHQJPWLj2i+L51fZQoaAZoCWgPQwgLtDukGNpCQJSGlFKUaBVL6WgWR0CT1okHlfZ3dX2UKGgGaAloD0MIQgddwmFVcUCUhpRSlGgVTQYBaBZHQJPXDbJwKjV1fZQoaAZoCWgPQwiWB+kp8rxtQJSGlFKUaBVNVAFoFkdAk9cebd8ArHV9lChoBmgJaA9DCN21hHzQoG9AlIaUUpRoFU0YAWgWR0CT2EB0p3HJdX2UKGgGaAloD0MI1T4djxk2ckCUhpRSlGgVTRsBaBZHQJPYPzPKMeh1fZQoaAZoCWgPQwh3SZwVkTNxQJSGlFKUaBVNQwFoFkdAk9hhdIGyHHV9lChoBmgJaA9DCCVa8nja4G9AlIaUUpRoFU0OAWgWR0CT2ZRfnfVJdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4597f1e571c5ef99ff9b9d49be77c48345b10636c327b8e11f7833a8672b8c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fa98f285fdd7836c20cb66b6336fc2ed1777d8edd03b6d0a3bae4344d135f51
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.06908103345984, "std_reward": 16.706894314147505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T22:01:47.844923"}
|