ppo-LunarLander-v2 / config.json
dmenini's picture
train: ppo LunarLander-v2 trained agent with long training, higher bs
60965b4
raw
history blame
15 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69fc03d4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69fc03d550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69fc03d5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69fc03d670>", "_build": "<function ActorCriticPolicy._build at 0x7f69fc03d700>", "forward": "<function ActorCriticPolicy.forward at 0x7f69fc03d790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69fc03d820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69fc03d8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69fc03d940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69fc03d9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69fc03da60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69fc03daf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69fc0b0d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677881368375497082, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADNFJjzh4JS6Ujsus+uehDH69pq61LCzMwAAgD8AAIA/Zvu2POqPrz90Uz0/qe4bv0Thnbx1baa9AAAAAAAAAACaWuE8o6lBPSIgqL1LX7W+0cHxOv4Bo7wAAAAAAAAAAF1giD65egQ/w9sfvs4yGL8RM/I+fT5DvgAAAAAAAAAAGvkCvSlwXrpBFR0400kMM1TjUzjIaji3AACAPwAAgD/AO1U+x4bbPr7pjL6+fhq/1PhPPj5rL74AAAAAAAAAAJqfMryU1LE/vhi2vqmLsb4utNA7M+oLOwAAAAAAAAAADbjUveEUSz6GTDQ+Y6/Nvt2UnL3yfQE+AAAAAAAAAACzrN69w/OjP3UXD79fHwy/WSoUvjkynb4AAAAAAAAAAGY2qzw9XXi7tGk4vvCIPL4uZUi9IraEPwAAgD8AAAAAANSlPOR0aD/Nohk9uUJOv2INLD3jSj67AAAAAAAAAAAarfk9gwWbPm73db7mDw6/TZCBPZqbPL4AAAAAAAAAAE1wCT1II7K6kJutPBwYmDwpes26kNmDPQAAgD8AAIA/zRJWva4fszvsrAk+JCSyvkb7nj2My4k9AAAAAAAAgD/mgdM9HF1FPaI3vb68Nr6+hM3nvbtC2rwAAAAAAAAAAM3j1bwUkIC65UTTvW9bMTOwAI86j8FEswAAgD8AAIA/ZgkgvcO9fbqOuCU4IjMhM8M0cjv+pUG3AACAPwAAgD8doGC+JLiLP+JVYL6WFTi/mJCkvpz8ob0AAAAAAAAAAM2NTT7Yev0+9dL0vVA1C7/TQJg+NTEtvgAAAAAAAAAAmpFJOx/V8blBJMs9QLHrsfHSvDuomfezAACAPwAAgD9NeVg9nAbDPoCAULyDHge/79nbPdgm0zwAAAAAAAAAAJriYz0jIGY/jjZlPVCkRL9BAOc9rH7IvAAAAAAAAAAA85NoPnKMvD4TvIi+9ZkNv8YfgD7l2p6+AAAAAAAAAABNqZ29hdbDPAaXlz6sBaS+HY9aPja05T0AAAAAAAAAAGYOXL3Ot7M/iQedvpO3bL7SWq67zHEtvQAAAAAAAAAAZkOZvSPLVD1Ogyc+jFyzvik8Jr1v8xY+AAAAAAAAAADtpwm+RO+LPVYmlj4xwrS+ZcbHO15xfz4AAAAAAAAAAAAyPbxci0S626KPPQ6cYzwH31e7xc5HPQAAgD8AAIA/c77hPXj0wD2CEsG+ZkC9vqhNrL2iJdy9AAAAAAAAAACajbW8gD4APxvtMTzU7hS/hS3QvEcoDz0AAAAAAAAAADMDmDuPbmi6I1cFNU3lbTC4mPW4CyNutAAAgD8AAIA/AMZWvHH/N7uHI4a98zSNPDtcdTwSM3O9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu16aIgCmcECUhpRSlIwBbJRLx4wBdJRHQLOdBmqYJE91fZQoaAZoCWgPQwgSaRt/ollyQJSGlFKUaBVLymgWR0CznSfJFLFodX2UKGgGaAloD0MIQ3IycWsNc0CUhpRSlGgVS8VoFkdAs50+v2Xb/XV9lChoBmgJaA9DCB2rlJ5p1HJAlIaUUpRoFUvNaBZHQLOdR9ETg2t1fZQoaAZoCWgPQwjX+bfL/uBxQJSGlFKUaBVLr2gWR0CznUe5BkZrdX2UKGgGaAloD0MI9phIafb7cUCUhpRSlGgVS79oFkdAs51qkM1CPnV9lChoBmgJaA9DCC43GOqwvXNAlIaUUpRoFUvAaBZHQLOddl8PWhB1fZQoaAZoCWgPQwjtEWqGFE9zQJSGlFKUaBVLv2gWR0CznXs/pt78dX2UKGgGaAloD0MIk+F4PkMQcECUhpRSlGgVS7hoFkdAs5162F36h3V9lChoBmgJaA9DCNSdJ54zynNAlIaUUpRoFUvXaBZHQLOdlttALRd1fZQoaAZoCWgPQwge+YOBJ+RyQJSGlFKUaBVLx2gWR0CznaWsmv4edX2UKGgGaAloD0MIborHRXXOcUCUhpRSlGgVS8ZoFkdAs52xc7hegXV9lChoBmgJaA9DCPXabKyEeXNAlIaUUpRoFUvPaBZHQLOdyHSWqtJ1fZQoaAZoCWgPQwgP8Q9b+tZwQJSGlFKUaBVLqmgWR0CznfOz+m3wdX2UKGgGaAloD0MIfjUHCKbJcUCUhpRSlGgVS8hoFkdAs54DuXu3MXV9lChoBmgJaA9DCAQCnUmbx3JAlIaUUpRoFUvUaBZHQLOeDr0aqCJ1fZQoaAZoCWgPQwhzu5f75ORBQJSGlFKUaBVLXGgWR0CznjRcVxjsdX2UKGgGaAloD0MIr9LddTZycECUhpRSlGgVS7hoFkdAs55Eaya/h3V9lChoBmgJaA9DCEj6tIq+xXJAlIaUUpRoFUu3aBZHQLOeYPBBRht1fZQoaAZoCWgPQwhOuFfm7YZzQJSGlFKUaBVLzmgWR0Cznm1XiiqRdX2UKGgGaAloD0MI8icqGxZlcUCUhpRSlGgVS7toFkdAs55zYnOSn3V9lChoBmgJaA9DCMWu7e3WDHFAlIaUUpRoFUuuaBZHQLOedCFK02N1fZQoaAZoCWgPQwiRgNHlDU1xQJSGlFKUaBVLomgWR0Cznn978ejmdX2UKGgGaAloD0MIdzHNdK+QckCUhpRSlGgVS6FoFkdAs56I8nuy/3V9lChoBmgJaA9DCEYm4NdIWXFAlIaUUpRoFUutaBZHQLOejCUX5311fZQoaAZoCWgPQwgqAwe09D5zQJSGlFKUaBVL02gWR0CznpdXgccVdX2UKGgGaAloD0MIXfxtTxD6ckCUhpRSlGgVS81oFkdAs56gQsf7rXV9lChoBmgJaA9DCKhSswfaDnBAlIaUUpRoFUu2aBZHQLOeomRvFWJ1fZQoaAZoCWgPQwhaY9AJIRJyQJSGlFKUaBVLmmgWR0Cznrai0v4/dX2UKGgGaAloD0MI0SLb+T6MckCUhpRSlGgVS7toFkdAs56zkRzzVnV9lChoBmgJaA9DCA73kVsTa3FAlIaUUpRoFUvKaBZHQLOe0aef7Jp1fZQoaAZoCWgPQwjPu7GgMKJzQJSGlFKUaBVL3WgWR0CznvXbmEGrdX2UKGgGaAloD0MIIH2TpkFMc0CUhpRSlGgVS9NoFkdAs58EJ6Y3N3V9lChoBmgJaA9DCIgvE0WInXBAlIaUUpRoFUu0aBZHQLOfE/echDB1fZQoaAZoCWgPQwhTXFX2nfJzQJSGlFKUaBVL32gWR0CznxdLteD4dX2UKGgGaAloD0MIpz0l50Q5ckCUhpRSlGgVS8BoFkdAs58wBcRlH3V9lChoBmgJaA9DCPxwkBAlxHNAlIaUUpRoFUvhaBZHQLOfN6xgRbt1fZQoaAZoCWgPQwgNiuYB7FdzQJSGlFKUaBVLwmgWR0Czn1gk5ZKWdX2UKGgGaAloD0MILlkV4SaOckCUhpRSlGgVS8BoFkdAs59jfdhy83V9lChoBmgJaA9DCMx5xr5kZXNAlIaUUpRoFUvAaBZHQLOfYxR2r4p1fZQoaAZoCWgPQwgt7GmHf29yQJSGlFKUaBVLj2gWR0Czn2jsUqQSdX2UKGgGaAloD0MI/TIYI5Ipb0CUhpRSlGgVS6xoFkdAs59xBu4wy3V9lChoBmgJaA9DCMUe2seKrHBAlIaUUpRoFUvCaBZHQLOfesCDEm91fZQoaAZoCWgPQwhl4ICWruNzQJSGlFKUaBVL1GgWR0Czn4z/MnqndX2UKGgGaAloD0MI2T7kLZfzc0CUhpRSlGgVS8FoFkdAs5+QLkS26XV9lChoBmgJaA9DCDyiQnUz9nFAlIaUUpRoFUvMaBZHQLOfniM5wOx1fZQoaAZoCWgPQwiFCaNZWQZxQJSGlFKUaBVLvmgWR0Czn77ORkmQdX2UKGgGaAloD0MIZkrrb8kicUCUhpRSlGgVS8FoFkdAs5/T/YJ3PnV9lChoBmgJaA9DCJ7Q60+i0XFAlIaUUpRoFUuvaBZHQLOf5KKYRd11fZQoaAZoCWgPQwj9aDhl7kdyQJSGlFKUaBVLqGgWR0CzoAybUgB+dX2UKGgGaAloD0MIPgRVoxcvcUCUhpRSlGgVS6BoFkdAs6AScawUxnV9lChoBmgJaA9DCMhcGVQbQW9AlIaUUpRoFUusaBZHQLOgHhE0BOp1fZQoaAZoCWgPQwhKCiyAaRZxQJSGlFKUaBVLrGgWR0CzoC4GMXJpdX2UKGgGaAloD0MIucSRB+KjcUCUhpRSlGgVS8xoFkdAs6A5ZV4oqnV9lChoBmgJaA9DCMuAs5TsQHFAlIaUUpRoFUuiaBZHQLOgPHWz4UN1fZQoaAZoCWgPQwg1CHO7F2VxQJSGlFKUaBVLu2gWR0CzoEyr5qM4dX2UKGgGaAloD0MIdLSqJR07c0CUhpRSlGgVS6hoFkdAs6CWqhlDnnV9lChoBmgJaA9DCG0ANiACgHJAlIaUUpRoFUvYaBZHQLOgnZA6dUd1fZQoaAZoCWgPQwhy3ZTymqByQJSGlFKUaBVLt2gWR0CzoJ2KMvRJdX2UKGgGaAloD0MItJPBUTLIc0CUhpRSlGgVS8hoFkdAs6ChgfEGaHV9lChoBmgJaA9DCPFHUWeuUHJAlIaUUpRoFUvHaBZHQLOg2WiUPhB1fZQoaAZoCWgPQwgtz4O7MztyQJSGlFKUaBVLqGgWR0CzoOQHAymAdX2UKGgGaAloD0MIFhdH5ebDcUCUhpRSlGgVS9hoFkdAs6DrJV81GnV9lChoBmgJaA9DCO0MU1uq0nNAlIaUUpRoFUvcaBZHQLOhBUcn3L51fZQoaAZoCWgPQwgvF/GdWCdzQJSGlFKUaBVLxGgWR0CzoS1CPZIydX2UKGgGaAloD0MIChSxiOGHckCUhpRSlGgVS7loFkdAs6E35zo2XXV9lChoBmgJaA9DCHXlszzPhHFAlIaUUpRoFUuuaBZHQLOhRNvfj0d1fZQoaAZoCWgPQwjJqgg32RNzQJSGlFKUaBVLz2gWR0CzoYRFmWdFdX2UKGgGaAloD0MIjzf5LTrBb0CUhpRSlGgVS6NoFkdAs6GbSb6P83V9lChoBmgJaA9DCMTuO4bHpnFAlIaUUpRoFUu1aBZHQLOhm371qWV1fZQoaAZoCWgPQwgGobyPo4BzQJSGlFKUaBVLymgWR0CzoZyvPkaNdX2UKGgGaAloD0MIJqsi3CSacECUhpRSlGgVS7BoFkdAs6GhZEDyOXV9lChoBmgJaA9DCJ+vWS7b4XBAlIaUUpRoFUvKaBZHQLOh7llbu+h1fZQoaAZoCWgPQwgCnx9GSOtwQJSGlFKUaBVLsWgWR0CzofJEc81XdX2UKGgGaAloD0MI01CjkORyc0CUhpRSlGgVS85oFkdAs6IHu1F6RnV9lChoBmgJaA9DCHZR9MDH43FAlIaUUpRoFUvDaBZHQLOiG2OAAhl1fZQoaAZoCWgPQwgLR5BKMU9zQJSGlFKUaBVL0GgWR0Czoi5RKpT/dX2UKGgGaAloD0MIgjy7fKsscECUhpRSlGgVS6hoFkdAs6JCOIZZS3V9lChoBmgJaA9DCF8JpMRuFHNAlIaUUpRoFUu0aBZHQLOiVDqW1MN1fZQoaAZoCWgPQwg+BitO9etxQJSGlFKUaBVLmWgWR0CzolNWluWKdX2UKGgGaAloD0MIn1kSoOYccUCUhpRSlGgVS6RoFkdAs6Jr99+gDnV9lChoBmgJaA9DCKPlQA91EXJAlIaUUpRoFUvzaBZHQLOieg2Ifr91fZQoaAZoCWgPQwho6J/govJxQJSGlFKUaBVLzWgWR0CzopBQvYe1dX2UKGgGaAloD0MIPglszkF3b0CUhpRSlGgVS7NoFkdAs6K/bj94vHV9lChoBmgJaA9DCO61oPeG5nFAlIaUUpRoFUvAaBZHQLOiyO+IuXh1fZQoaAZoCWgPQwgheHx7V9pyQJSGlFKUaBVLw2gWR0Czos+B6KLsdX2UKGgGaAloD0MItFn1uVoEcECUhpRSlGgVS75oFkdAs6LnQNTcZnV9lChoBmgJaA9DCD9Tr1vEi3JAlIaUUpRoFUu+aBZHQLOi+mR/3Fl1fZQoaAZoCWgPQwi+amXC73tyQJSGlFKUaBVLsWgWR0CzoyQbQ1JldX2UKGgGaAloD0MIoImw4WkDcUCUhpRSlGgVS7doFkdAs6M7yjHn2nV9lChoBmgJaA9DCMstrYYEZ3FAlIaUUpRoFUuraBZHQLOjTPykKu11fZQoaAZoCWgPQwg1YJD0ae5wQJSGlFKUaBVLv2gWR0Czo1JgLJCCdX2UKGgGaAloD0MI4umVsoxackCUhpRSlGgVS8NoFkdAs6NtDOTq0XV9lChoBmgJaA9DCHmUSnhConBAlIaUUpRoFUunaBZHQLOjcDdP+GZ1fZQoaAZoCWgPQwhoCTICqkhyQJSGlFKUaBVLumgWR0Czo5mapgkUdX2UKGgGaAloD0MIweYcPJN6bkCUhpRSlGgVS61oFkdAs6O4oa1kUnV9lChoBmgJaA9DCN/DJcddgHFAlIaUUpRoFUu9aBZHQLOkDHTqjah1fZQoaAZoCWgPQwjt9e6P9ydzQJSGlFKUaBVL2WgWR0CzpA9SZSeidX2UKGgGaAloD0MIVDVB1D31cECUhpRSlGgVS7NoFkdAs6RKekHlfnV9lChoBmgJaA9DCAqjWdk+6XJAlIaUUpRoFUu5aBZHQLOkScQyylh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 768, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}