Daniele Licari
commited on
Commit
•
a1e3769
1
Parent(s):
4781faf
Upload ner_it_legalbert.cfg
Browse files- ner_it_legalbert.cfg +146 -0
ner_it_legalbert.cfg
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[paths]
|
2 |
+
train = "train_data.spacy"
|
3 |
+
dev = "dev_data.spacy"
|
4 |
+
vectors = null
|
5 |
+
init_tok2vec = null
|
6 |
+
|
7 |
+
[system]
|
8 |
+
gpu_allocator = "pytorch"
|
9 |
+
seed = 0
|
10 |
+
|
11 |
+
[nlp]
|
12 |
+
lang = "it"
|
13 |
+
pipeline = ["transformer","ner"]
|
14 |
+
batch_size = 128
|
15 |
+
disabled = []
|
16 |
+
before_creation = null
|
17 |
+
after_creation = null
|
18 |
+
after_pipeline_creation = null
|
19 |
+
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
20 |
+
|
21 |
+
[components]
|
22 |
+
|
23 |
+
[components.ner]
|
24 |
+
factory = "ner"
|
25 |
+
incorrect_spans_key = null
|
26 |
+
moves = null
|
27 |
+
scorer = {"@scorers":"spacy.ner_scorer.v1"}
|
28 |
+
update_with_oracle_cut_size = 100
|
29 |
+
|
30 |
+
[components.ner.model]
|
31 |
+
@architectures = "spacy.TransitionBasedParser.v2"
|
32 |
+
state_type = "ner"
|
33 |
+
extra_state_tokens = false
|
34 |
+
hidden_width = 64
|
35 |
+
maxout_pieces = 2
|
36 |
+
use_upper = false
|
37 |
+
nO = null
|
38 |
+
|
39 |
+
[components.ner.model.tok2vec]
|
40 |
+
@architectures = "spacy-transformers.TransformerListener.v1"
|
41 |
+
grad_factor = 1.0
|
42 |
+
pooling = {"@layers":"reduce_mean.v1"}
|
43 |
+
upstream = "*"
|
44 |
+
|
45 |
+
[components.transformer]
|
46 |
+
factory = "transformer"
|
47 |
+
max_batch_items = 4096
|
48 |
+
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
|
49 |
+
|
50 |
+
[components.transformer.model]
|
51 |
+
@architectures = "spacy-transformers.TransformerModel.v3"
|
52 |
+
name = "dbmdz/bert-base-italian-xxl-cased"
|
53 |
+
mixed_precision = false
|
54 |
+
# tokenizer_config = {"use_fast": true}
|
55 |
+
|
56 |
+
[components.transformer.model.get_spans]
|
57 |
+
@span_getters = "spacy-transformers.strided_spans.v1"
|
58 |
+
window = 128
|
59 |
+
stride = 96
|
60 |
+
|
61 |
+
[components.transformer.model.grad_scaler_config]
|
62 |
+
|
63 |
+
[components.transformer.model.tokenizer_config]
|
64 |
+
# use_fast = true
|
65 |
+
|
66 |
+
[components.transformer.model.transformer_config]
|
67 |
+
|
68 |
+
[corpora]
|
69 |
+
|
70 |
+
[corpora.dev]
|
71 |
+
@readers = "spacy.Corpus.v1"
|
72 |
+
path = ${paths.dev}
|
73 |
+
max_length = 0
|
74 |
+
gold_preproc = false
|
75 |
+
limit = 0
|
76 |
+
augmenter = null
|
77 |
+
|
78 |
+
[corpora.train]
|
79 |
+
@readers = "spacy.Corpus.v1"
|
80 |
+
path = ${paths.train}
|
81 |
+
max_length = 0
|
82 |
+
gold_preproc = false
|
83 |
+
limit = 0
|
84 |
+
augmenter = null
|
85 |
+
|
86 |
+
[training]
|
87 |
+
accumulate_gradient = 3
|
88 |
+
dev_corpus = "corpora.dev"
|
89 |
+
train_corpus = "corpora.train"
|
90 |
+
seed = ${system.seed}
|
91 |
+
gpu_allocator = ${system.gpu_allocator}
|
92 |
+
dropout = 0.1
|
93 |
+
patience = 600
|
94 |
+
max_epochs = 0
|
95 |
+
max_steps = 3000
|
96 |
+
eval_frequency = 200
|
97 |
+
frozen_components = []
|
98 |
+
annotating_components = []
|
99 |
+
before_to_disk = null
|
100 |
+
|
101 |
+
[training.batcher]
|
102 |
+
@batchers = "spacy.batch_by_padded.v1"
|
103 |
+
discard_oversize = true
|
104 |
+
size = 2000
|
105 |
+
buffer = 256
|
106 |
+
get_length = null
|
107 |
+
|
108 |
+
[training.logger]
|
109 |
+
@loggers = "spacy.ConsoleLogger.v1"
|
110 |
+
progress_bar = false
|
111 |
+
|
112 |
+
[training.optimizer]
|
113 |
+
@optimizers = "Adam.v1"
|
114 |
+
beta1 = 0.9
|
115 |
+
beta2 = 0.999
|
116 |
+
L2_is_weight_decay = true
|
117 |
+
L2 = 0.01
|
118 |
+
grad_clip = 1.0
|
119 |
+
use_averages = false
|
120 |
+
eps = 0.00000001
|
121 |
+
|
122 |
+
[training.optimizer.learn_rate]
|
123 |
+
@schedules = "warmup_linear.v1"
|
124 |
+
warmup_steps = 25
|
125 |
+
total_steps = 3000
|
126 |
+
initial_rate = 0.00005
|
127 |
+
|
128 |
+
[training.score_weights]
|
129 |
+
ents_f = 1.0
|
130 |
+
ents_p = 0
|
131 |
+
ents_r = 0
|
132 |
+
ents_per_type = null
|
133 |
+
|
134 |
+
[pretraining]
|
135 |
+
|
136 |
+
[initialize]
|
137 |
+
vectors = ${paths.vectors}
|
138 |
+
init_tok2vec = ${paths.init_tok2vec}
|
139 |
+
vocab_data = null
|
140 |
+
lookups = null
|
141 |
+
before_init = null
|
142 |
+
after_init = null
|
143 |
+
|
144 |
+
[initialize.components]
|
145 |
+
|
146 |
+
[initialize.tokenizer]
|