dlantonia commited on
Commit
2f25a85
·
verified ·
1 Parent(s): d9745a4

Upload PPO BipedalWalker-v3 trained agent

Browse files
BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e36188449f0c1b946e91c6514ffd4a58dd06abc3dd23377903c6c2a5494aea0
3
+ size 176967
BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
BipedalWalker-v3/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bfddb72fb50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bfddb72fbe0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bfddb72fc70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bfddb72fd00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bfddb72fd90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bfddb72fe20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bfddb72feb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bfddb72ff40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bfddb720040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bfddb7200d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bfddb720160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bfddb7201f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bfddb6daac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1723219720779509873,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAKItHD/auy0925/TPh8Blr0Exmq/1t3Mv+CVFL7NLoA/AACAP6tEkT8AAA83XlZvP6sqwDgAAAAABsuPPpuCjz5y/JE+sNOZPuHGpz5DgL4+f9zkPmvwDz8c5Uk/AACAP4wNOj4gg909Bt1MPjLmFD1+jia/i9YmP9BUR74AAIC/AAAAADw5iz/IBgS/Sib2PoEBmr4AAIA/p1aFPl8ihz4eMYw+8h2VPnUcoz4/Qbg+xbPbPo+dDD9qgko/AACAP/XzfD9ydm09V0SIPsPwCT3YvVW/AAAAs7wQlr5L+d69AACAP4Boiz9474K+XFxpP6uqKjIAAAAAYEOlPjmRoz5UIqc+bzCvPiH3vD7p/9E+oyD2PjUfFj/UglU/AACAP1i3Gz/XvlE94N6RPrsrR70Gzyu///9/v6h+Rr65mNs+AACAP19eUT+U1je+1mxZP/3/fz8AAAAAPB2aPjsFmT6+f5s+q3ejPrAXsT4Twsc+M+rrPpZ8ET/4j04/AACAP4YuRjwS5em9YF0HP38H3rwUACO/9/9/P+Bnu739/3+/AAAAAMOthj8Wxh2/7JItP0Z7CUAAAIA/r7yIPq1vjD5o7ZM+fIegPlNVtD4jA9Q+P9QDP4O1Kj8bFGs/AACAP31unD5yKsa8NTyBPorq7rtAza6+nAOQvrjxz75Ui5M+AACAP0dEUz++B7i+dBEHP1wIgD8AAAAAR3ucPpv2nz5phKU+nQWvPlspvj6tatY+CfD8PrH9Hj9g51c/AACAP4VK4j3JLVo9vf6iPuBSfj2+UPC+DgCAP2A3r73//3+/AAAAALfJkD8AAACzLEgDPgQAgL8AAAAAR7KsPl84rD5dP7I+/1C6PqsZxj5bgtw+DCwBPzbAIj/gkWA/AACAP3OUF72uUuQ8CjIhPrziqD0V6wa/AwCAPwDYlbsBAIC/AAAAACO4jz8AAICyjgpiP4Ex3r4AAAAA+XyVPrsilT7+J5g+xauePjh2qj7ijb4+6FzePptGDj/5iU0/AACAP/y/Gj4uHk09OeOoPpWyF73mLEm+RI36PqRCAb/7/38/AAAAACsEfz+HGm6/jM4dvwAAAAAAAAAAW2GvPk7ssD5jGbc+N4zDPuTH1j5t/fc+hWgTPz0HQD8AAIA/AACAP2R/LT5NeKK8jM42PjjVejw6UjS/7IEpP6Coab3//3+/AAAAANyJgz/AJx0/ZJ8OP+NzR78AAAAAtI6WPi1elz7njJs+rf2iPk5usD7ovMY+McTmPgeYED/hfUM/AACAP/pgCj9KF7M8ihfbPirhtrwBF1C/mAGAv6jRSL5R3zA/AACAP8R/kD8AAIo11oVJP1UAgD8AAAAAlhqRPnQWkz7/cpk+o4GkPo/Htj7guM8+TXrzPkEDFz8faks/AACAP5jR/j1fjI89jJs3PqYnsj3MMfG+o3uIP4A/1rz//3+/AAAAAHiuiD/GHnU+oOtxPgEAgL8AAIA/QxKjPsmspD4bJas+Lu+2Pl5Zyj70teQ+FN4EP0CFJT/sC1Q/AACAP3IInT7pits93CCWPpPFmbxe5a2+8v9/P05rBr/8/3+/AAAAAJqZiT8Niy+/aPyxPSuCDr4AAIA/m+qTPpGIlD75cpg+5MWfPlzrqz4aSL8+VY3fPvEsCj/NgDA/AACAP7rSGD/85668BefLPpj65rxaTDy/i5wUv+jGr76QsvM+AACAPwO6dT+Ah9W87swtPxICgD8AAAAAcj2NPkptjj6r9pE+MPSZPqMBqT7cIMA+lEnnPokHET+fYUU/AACAPyv/GT+o4Cw9wdTSPnY4vb2dKhe/SQOEv9Tx+b6TOLU+AACAP2Q2jz8AAAAA3MgnPwMAgD8AAAAAxOWXPrMXnD4dcKM+1WywPkXLxD6PCeQ+oM8JPwgQLT/XyHc/AACAP6VS5D4wkYY8h2/wPgrrp73HAGO/5terv0D21jzcAoA/AAAAAEHEkj9hAIA/9lVvPzX/f78AAAAAZC+OPsPMjz4f1ZQ+sOedPohGrD4XU8I+pLzkPv6EED+ctEg/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0027007999999999477,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE5VEroW56OMAWyUTXYFjAF0lEdAqTf2GIsRQXV9lChoBkdAaQ3tqHoHLWgHTUAGaAhHQKk5ns0HhS91fZQoaAZHQGijnyEtdzJoB01ABmgIR0CpOrlz2exwdX2UKGgGR0BomHszEaVEaAdNQAZoCEdAqT2UEkjX4HV9lChoBkdAaWu3OObRW2gHTUAGaAhHQKlHvoTwlSl1fZQoaAZHQGfw8gZCOWBoB01ABmgIR0CpR9sJQcghdX2UKGgGR8BNeb5uZThpaAdN5wFoCEdAqUhTwUg0THV9lChoBkdAZ/KyE+Pik2gHTUAGaAhHQKlJg4VARkF1fZQoaAZHQGj+l1r6+FloB01ABmgIR0CpShpNTLntdX2UKGgGR0BnK96Tnq3WaAdNQAZoCEdAqUr8m2LHdXV9lChoBkfATzHgiu+yq2gHTcYBaAhHQKlLtMRHww11fZQoaAZHQGiw1qesgdRoB01ABmgIR0CpTOLMTviMdX2UKGgGR0BoLMiOearnaAdNQAZoCEdAqU0LuBtk4HV9lChoBkdAaYhfjS5RTGgHTUAGaAhHQKlNlsqril11fZQoaAZHQGlHvZAY51hoB01ABmgIR0CpTwrytmthdX2UKGgGR0Bokpvze40/aAdNQAZoCEdAqU8rTDwYtXV9lChoBkc/5i2KEWZZ0WgHTd0DaAhHQKlPe0E5hjR1fZQoaAZHQGga55qubI9oB01ABmgIR0CpT/cgZCOWdX2UKGgGR0Bn8sqc3EQ5aAdNQAZoCEdAqVDRMDfWMHV9lChoBkfAWRleF+NLlGgHS4RoCEdAqVDdCb+cY3V9lChoBkfAWVlEUj9n9WgHS1NoCEdAqVHYmXw9aHV9lChoBkdAaPfO9FnZkGgHTUAGaAhHQKlfwspXp4d1fZQoaAZHwDI1gYxcmjVoB00FA2gIR0CpYp912aDxdX2UKGgGR0BpP2EAYHgQaAdNQAZoCEdAqWMPbO/tY3V9lChoBkdAZpoJ66asqGgHTUAGaAhHQKljKqcVgx91fZQoaAZHQGfqu4oZydZoB01ABmgIR0CpY6izsyBTdX2UKGgGR0Bl2nwPRRdhaAdNQAZoCEdAqWTJW912aHV9lChoBkdAap9wGW2PUGgHTUAGaAhHQKllWuf29L91fZQoaAZHQGanpmNBF/hoB01ABmgIR0CpZj6UiY9gdX2UKGgGR8BSCIvnKW9laAdNOAFoCEdAqWZKT6i0wHV9lChoBkdAaCIM3qAz6GgHTUAGaAhHQKlxsjTrmhd1fZQoaAZHQGk5u0b961NoB01ABmgIR0Cpct/cer+6dX2UKGgGR0BphIn8baRIaAdNQAZoCEdAqXMEzXSSeXV9lChoBkdAZ2xTXJ5miGgHTUAGaAhHQKlzjazu4PR1fZQoaAZHQGlM4sVclgNoB01ABmgIR0CpdQEAHVwxdX2UKGgGR0BoSNMAWBSUaAdNQAZoCEdAqXUhTGYKIHV9lChoBkdAZk1o7FKkEmgHTUAGaAhHQKl22BDohZB1fZQoaAZHP+1p/wy6+WZoB01mA2gIR0CpdvblA/s3dX2UKGgGR0AkQyB06o2oaAdNrwNoCEdAqXcyKUFB6nV9lChoBkdAaCj3sXzlLmgHTUAGaAhHQKl3uIIF/x51fZQoaAZHwEq67DEWIoFoB03gAWgIR0CpejMniNsFdX2UKGgGR0Bn/+Ef1YhdaAdNQAZoCEdAqXsnbTMJQnV9lChoBkdAZP0RRMvh62gHTUAGaAhHQKmKLD8cdYJ1fZQoaAZHQGcM46XBxgloB01ABmgIR0Cpi6690zTGdX2UKGgGR0BlfVwR5C4SaAdNQAZoCEdAqYxCgh8pkXV9lChoBkdAaKvsu3+db2gHTUAGaAhHQKmNKfzz3AV1fZQoaAZHQGTSYz7/GVBoB01ABmgIR0CpjTXvhIe6dX2UKGgGR0BoHlXxOLzgaAdNQAZoCEdAqY3iNhmXgXV9lChoBkdAZzD7k4m1IGgHTUAGaAhHQKmPC5NGmUJ1fZQoaAZHQGpfnssxwhpoB01ABmgIR0CpjzFr/KhddX2UKGgGR0BjqidDpkf+aAdNQAZoCEdAqY+7abnX/nV9lChoBkdAajCeJYT0x2gHTUAGaAhHQKmRNqWTouB1fZQoaAZHQGpOe85CF9NoB00tBmgIR0CpnBMb3oLYdX2UKGgGR0BkANMIu5BkaAdNQAZoCEdAqZwrT+ee4HV9lChoBkdAaL7j5Kvmo2gHTUAGaAhHQKmcfHUc4o91fZQoaAZHQGbreI2wV0toB01ABmgIR0CpnPyNwR5DdX2UKGgGR0Bnz/Efkmx/aAdNQAZoCEdAqZ+6ed07sHV9lChoBkdAaXnteD3/P2gHTUAGaAhHQKmhEO1fE4x1fZQoaAZHQGmGKbSZ0CBoB01ABmgIR0Cpppahg3LndX2UKGgGR8BM9CiyprDZaAdN9gFoCEdAqab0GRmseXV9lChoBkdAZ0GQPI4lyGgHTUAGaAhHQKmny9A5aNd1fZQoaAZHQGlQPqs2ehBoB01ABmgIR0CpqGMBQvYfdX2UKGgGR0Boz78P4EfUaAdNQAZoCEdAqbJ8PczqKXV9lChoBkdAZ/yRDCxeLWgHTUAGaAhHQKmyiDcuand1fZQoaAZHQGlOpZW7vohoB01ABmgIR0CpszD7yhBadX2UKGgGR0Bny+krPMSsaAdNQAZoCEdAqbRZoIv8InV9lChoBkdAZpNRP420iWgHTUAGaAhHQKm0gEB8x9J1fZQoaAZHQGkJHdweeWhoB01ABmgIR0CptQqtHQQddX2UKGgGR0BndeUQkHD8aAdNQAZoCEdAqbaJjz7MxHV9lChoBkdAZotvm5lOGmgHTUAGaAhHQKm4OZTho/R1fZQoaAZHQGetRSxZ+x5oB01ABmgIR0CpuFMjNY8udX2UKGgGR0BmDDKRuCPIaAdNQAZoCEdAqbii9sabWnV9lChoBkdAZ/JPqLS/kGgHTUAGaAhHQKm5I5BC2MN1fZQoaAZHQGisrsByS3doB01ABmgIR0Cpx6JWmxdIdX2UKGgGR7+esxO+IuXeaAdNhQNoCEdAqcjQ/C66KHV9lChoBkdAP/1Y6nzg/GgHTUQEaAhHQKnLdMEidJ91fZQoaAZHQGoxBwl0HQhoB01ABmgIR0Cpy42KVII4dX2UKGgGR0BqngggX/HYaAdNQAZoCEdAqcvnU+cH4XV9lChoBkdAVSXfUF0PpmgHTYUFaAhHQKnMOvTw2EV1fZQoaAZHQGgHY6GQCCBoB01ABmgIR0CpzLSqMm4RdX2UKGgGR0BXkurU9ZA6aAdNHwZoCEdAqcz2ozeoDXV9lChoBkdAaZ9UHY6GQGgHTUAGaAhHQKnOMma6ST11fZQoaAZHQGnDjXvphWpoB01ABmgIR0CpzuNVinYQdX2UKGgGR8BNclsxfv4NaAdNYgFoCEdAqc+UXHim23V9lChoBkfATEIxL0z0pWgHTZkBaAhHQKnPthrnDBN1fZQoaAZHQGlkK1w5vLpoB01ABmgIR0Cp0DRJVbRndX2UKGgGR8BQNeCkGiYcaAdNUQFoCEdAqdB25c1O03V9lChoBkfAVucyDZlFt2gHTRwBaAhHQKnRLxc3VCp1fZQoaAZHQGekpFspG4JoB01ABmgIR0Cp0jS8zyjIdX2UKGgGR8AdOn3ta6jGaAdNJgRoCEdAqd56w6hg3XV9lChoBkdAZ3Ymmce8w2gHTUAGaAhHQKnekcn3L3d1fZQoaAZHQGkCmShakh1oB01ABmgIR0Cp3qvOyE+QdX2UKGgGR0Bpf1+y7f52aAdNQAZoCEdAqd7+yeI2wXV9lChoBkfAWySU/wAlwGgHSzZoCEdAqd898stkF3V9lChoBkfAWMZh4MWoFWgHS1loCEdAqd9wvzvqknV9lChoBkdAaBclANXo1WgHTUAGaAhHQKnfi96kZaV1fZQoaAZHQGdyS75Ec81oB01ABmgIR0Cp4vGMXJo1dX2UKGgGR0Agg606YE4eaAdNeQNoCEdAqeOLNyHVPXV9lChoBkdAJPgK4QSSNmgHTQgEaAhHQKnlobKifxt1fZQoaAZHQGdA7hvR7Z5oB01ABmgIR0Cp5twL/jsEdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1224,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
61
+ "_shape": [
62
+ 24
63
+ ],
64
+ "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
65
+ "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
66
+ "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
67
+ "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True]",
75
+ "bounded_above": "[ True True True True]",
76
+ "_shape": [
77
+ 4
78
+ ],
79
+ "low": "[-1. -1. -1. -1.]",
80
+ "high": "[1. 1. 1. 1.]",
81
+ "low_repr": "-1.0",
82
+ "high_repr": "1.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 16,
86
+ "n_steps": 1024,
87
+ "gamma": 0.999,
88
+ "gae_lambda": 0.98,
89
+ "ent_coef": 0.01,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 4,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25dea66bac910ae150efe99c44cb06a726a5babce2d5ff6c3502447c99f4ec3a
3
+ size 105441
BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0e9234ee4352a05616fa6797776af0c9fa02132735309574fcfa62727c92d3
3
+ size 52271
BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 202.98 +/- 68.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bfddb72fb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bfddb72fbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bfddb72fc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bfddb72fd00>", "_build": "<function ActorCriticPolicy._build at 0x7bfddb72fd90>", "forward": "<function ActorCriticPolicy.forward at 0x7bfddb72fe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bfddb72feb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bfddb72ff40>", "_predict": "<function ActorCriticPolicy._predict at 0x7bfddb720040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bfddb7200d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bfddb720160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bfddb7201f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bfddb6daac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723219720779509873, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAKItHD/auy0925/TPh8Blr0Exmq/1t3Mv+CVFL7NLoA/AACAP6tEkT8AAA83XlZvP6sqwDgAAAAABsuPPpuCjz5y/JE+sNOZPuHGpz5DgL4+f9zkPmvwDz8c5Uk/AACAP4wNOj4gg909Bt1MPjLmFD1+jia/i9YmP9BUR74AAIC/AAAAADw5iz/IBgS/Sib2PoEBmr4AAIA/p1aFPl8ihz4eMYw+8h2VPnUcoz4/Qbg+xbPbPo+dDD9qgko/AACAP/XzfD9ydm09V0SIPsPwCT3YvVW/AAAAs7wQlr5L+d69AACAP4Boiz9474K+XFxpP6uqKjIAAAAAYEOlPjmRoz5UIqc+bzCvPiH3vD7p/9E+oyD2PjUfFj/UglU/AACAP1i3Gz/XvlE94N6RPrsrR70Gzyu///9/v6h+Rr65mNs+AACAP19eUT+U1je+1mxZP/3/fz8AAAAAPB2aPjsFmT6+f5s+q3ejPrAXsT4Twsc+M+rrPpZ8ET/4j04/AACAP4YuRjwS5em9YF0HP38H3rwUACO/9/9/P+Bnu739/3+/AAAAAMOthj8Wxh2/7JItP0Z7CUAAAIA/r7yIPq1vjD5o7ZM+fIegPlNVtD4jA9Q+P9QDP4O1Kj8bFGs/AACAP31unD5yKsa8NTyBPorq7rtAza6+nAOQvrjxz75Ui5M+AACAP0dEUz++B7i+dBEHP1wIgD8AAAAAR3ucPpv2nz5phKU+nQWvPlspvj6tatY+CfD8PrH9Hj9g51c/AACAP4VK4j3JLVo9vf6iPuBSfj2+UPC+DgCAP2A3r73//3+/AAAAALfJkD8AAACzLEgDPgQAgL8AAAAAR7KsPl84rD5dP7I+/1C6PqsZxj5bgtw+DCwBPzbAIj/gkWA/AACAP3OUF72uUuQ8CjIhPrziqD0V6wa/AwCAPwDYlbsBAIC/AAAAACO4jz8AAICyjgpiP4Ex3r4AAAAA+XyVPrsilT7+J5g+xauePjh2qj7ijb4+6FzePptGDj/5iU0/AACAP/y/Gj4uHk09OeOoPpWyF73mLEm+RI36PqRCAb/7/38/AAAAACsEfz+HGm6/jM4dvwAAAAAAAAAAW2GvPk7ssD5jGbc+N4zDPuTH1j5t/fc+hWgTPz0HQD8AAIA/AACAP2R/LT5NeKK8jM42PjjVejw6UjS/7IEpP6Coab3//3+/AAAAANyJgz/AJx0/ZJ8OP+NzR78AAAAAtI6WPi1elz7njJs+rf2iPk5usD7ovMY+McTmPgeYED/hfUM/AACAP/pgCj9KF7M8ihfbPirhtrwBF1C/mAGAv6jRSL5R3zA/AACAP8R/kD8AAIo11oVJP1UAgD8AAAAAlhqRPnQWkz7/cpk+o4GkPo/Htj7guM8+TXrzPkEDFz8faks/AACAP5jR/j1fjI89jJs3PqYnsj3MMfG+o3uIP4A/1rz//3+/AAAAAHiuiD/GHnU+oOtxPgEAgL8AAIA/QxKjPsmspD4bJas+Lu+2Pl5Zyj70teQ+FN4EP0CFJT/sC1Q/AACAP3IInT7pits93CCWPpPFmbxe5a2+8v9/P05rBr/8/3+/AAAAAJqZiT8Niy+/aPyxPSuCDr4AAIA/m+qTPpGIlD75cpg+5MWfPlzrqz4aSL8+VY3fPvEsCj/NgDA/AACAP7rSGD/85668BefLPpj65rxaTDy/i5wUv+jGr76QsvM+AACAPwO6dT+Ah9W87swtPxICgD8AAAAAcj2NPkptjj6r9pE+MPSZPqMBqT7cIMA+lEnnPokHET+fYUU/AACAPyv/GT+o4Cw9wdTSPnY4vb2dKhe/SQOEv9Tx+b6TOLU+AACAP2Q2jz8AAAAA3MgnPwMAgD8AAAAAxOWXPrMXnD4dcKM+1WywPkXLxD6PCeQ+oM8JPwgQLT/XyHc/AACAP6VS5D4wkYY8h2/wPgrrp73HAGO/5terv0D21jzcAoA/AAAAAEHEkj9hAIA/9lVvPzX/f78AAAAAZC+OPsPMjz4f1ZQ+sOedPohGrD4XU8I+pLzkPv6EED+ctEg/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE5VEroW56OMAWyUTXYFjAF0lEdAqTf2GIsRQXV9lChoBkdAaQ3tqHoHLWgHTUAGaAhHQKk5ns0HhS91fZQoaAZHQGijnyEtdzJoB01ABmgIR0CpOrlz2exwdX2UKGgGR0BomHszEaVEaAdNQAZoCEdAqT2UEkjX4HV9lChoBkdAaWu3OObRW2gHTUAGaAhHQKlHvoTwlSl1fZQoaAZHQGfw8gZCOWBoB01ABmgIR0CpR9sJQcghdX2UKGgGR8BNeb5uZThpaAdN5wFoCEdAqUhTwUg0THV9lChoBkdAZ/KyE+Pik2gHTUAGaAhHQKlJg4VARkF1fZQoaAZHQGj+l1r6+FloB01ABmgIR0CpShpNTLntdX2UKGgGR0BnK96Tnq3WaAdNQAZoCEdAqUr8m2LHdXV9lChoBkfATzHgiu+yq2gHTcYBaAhHQKlLtMRHww11fZQoaAZHQGiw1qesgdRoB01ABmgIR0CpTOLMTviMdX2UKGgGR0BoLMiOearnaAdNQAZoCEdAqU0LuBtk4HV9lChoBkdAaYhfjS5RTGgHTUAGaAhHQKlNlsqril11fZQoaAZHQGlHvZAY51hoB01ABmgIR0CpTwrytmthdX2UKGgGR0Bokpvze40/aAdNQAZoCEdAqU8rTDwYtXV9lChoBkc/5i2KEWZZ0WgHTd0DaAhHQKlPe0E5hjR1fZQoaAZHQGga55qubI9oB01ABmgIR0CpT/cgZCOWdX2UKGgGR0Bn8sqc3EQ5aAdNQAZoCEdAqVDRMDfWMHV9lChoBkfAWRleF+NLlGgHS4RoCEdAqVDdCb+cY3V9lChoBkfAWVlEUj9n9WgHS1NoCEdAqVHYmXw9aHV9lChoBkdAaPfO9FnZkGgHTUAGaAhHQKlfwspXp4d1fZQoaAZHwDI1gYxcmjVoB00FA2gIR0CpYp912aDxdX2UKGgGR0BpP2EAYHgQaAdNQAZoCEdAqWMPbO/tY3V9lChoBkdAZpoJ66asqGgHTUAGaAhHQKljKqcVgx91fZQoaAZHQGfqu4oZydZoB01ABmgIR0CpY6izsyBTdX2UKGgGR0Bl2nwPRRdhaAdNQAZoCEdAqWTJW912aHV9lChoBkdAap9wGW2PUGgHTUAGaAhHQKllWuf29L91fZQoaAZHQGanpmNBF/hoB01ABmgIR0CpZj6UiY9gdX2UKGgGR8BSCIvnKW9laAdNOAFoCEdAqWZKT6i0wHV9lChoBkdAaCIM3qAz6GgHTUAGaAhHQKlxsjTrmhd1fZQoaAZHQGk5u0b961NoB01ABmgIR0Cpct/cer+6dX2UKGgGR0BphIn8baRIaAdNQAZoCEdAqXMEzXSSeXV9lChoBkdAZ2xTXJ5miGgHTUAGaAhHQKlzjazu4PR1fZQoaAZHQGlM4sVclgNoB01ABmgIR0CpdQEAHVwxdX2UKGgGR0BoSNMAWBSUaAdNQAZoCEdAqXUhTGYKIHV9lChoBkdAZk1o7FKkEmgHTUAGaAhHQKl22BDohZB1fZQoaAZHP+1p/wy6+WZoB01mA2gIR0CpdvblA/s3dX2UKGgGR0AkQyB06o2oaAdNrwNoCEdAqXcyKUFB6nV9lChoBkdAaCj3sXzlLmgHTUAGaAhHQKl3uIIF/x51fZQoaAZHwEq67DEWIoFoB03gAWgIR0CpejMniNsFdX2UKGgGR0Bn/+Ef1YhdaAdNQAZoCEdAqXsnbTMJQnV9lChoBkdAZP0RRMvh62gHTUAGaAhHQKmKLD8cdYJ1fZQoaAZHQGcM46XBxgloB01ABmgIR0Cpi6690zTGdX2UKGgGR0BlfVwR5C4SaAdNQAZoCEdAqYxCgh8pkXV9lChoBkdAaKvsu3+db2gHTUAGaAhHQKmNKfzz3AV1fZQoaAZHQGTSYz7/GVBoB01ABmgIR0CpjTXvhIe6dX2UKGgGR0BoHlXxOLzgaAdNQAZoCEdAqY3iNhmXgXV9lChoBkdAZzD7k4m1IGgHTUAGaAhHQKmPC5NGmUJ1fZQoaAZHQGpfnssxwhpoB01ABmgIR0CpjzFr/KhddX2UKGgGR0BjqidDpkf+aAdNQAZoCEdAqY+7abnX/nV9lChoBkdAajCeJYT0x2gHTUAGaAhHQKmRNqWTouB1fZQoaAZHQGpOe85CF9NoB00tBmgIR0CpnBMb3oLYdX2UKGgGR0BkANMIu5BkaAdNQAZoCEdAqZwrT+ee4HV9lChoBkdAaL7j5Kvmo2gHTUAGaAhHQKmcfHUc4o91fZQoaAZHQGbreI2wV0toB01ABmgIR0CpnPyNwR5DdX2UKGgGR0Bnz/Efkmx/aAdNQAZoCEdAqZ+6ed07sHV9lChoBkdAaXnteD3/P2gHTUAGaAhHQKmhEO1fE4x1fZQoaAZHQGmGKbSZ0CBoB01ABmgIR0Cpppahg3LndX2UKGgGR8BM9CiyprDZaAdN9gFoCEdAqab0GRmseXV9lChoBkdAZ0GQPI4lyGgHTUAGaAhHQKmny9A5aNd1fZQoaAZHQGlQPqs2ehBoB01ABmgIR0CpqGMBQvYfdX2UKGgGR0Boz78P4EfUaAdNQAZoCEdAqbJ8PczqKXV9lChoBkdAZ/yRDCxeLWgHTUAGaAhHQKmyiDcuand1fZQoaAZHQGlOpZW7vohoB01ABmgIR0CpszD7yhBadX2UKGgGR0Bny+krPMSsaAdNQAZoCEdAqbRZoIv8InV9lChoBkdAZpNRP420iWgHTUAGaAhHQKm0gEB8x9J1fZQoaAZHQGkJHdweeWhoB01ABmgIR0CptQqtHQQddX2UKGgGR0BndeUQkHD8aAdNQAZoCEdAqbaJjz7MxHV9lChoBkdAZotvm5lOGmgHTUAGaAhHQKm4OZTho/R1fZQoaAZHQGetRSxZ+x5oB01ABmgIR0CpuFMjNY8udX2UKGgGR0BmDDKRuCPIaAdNQAZoCEdAqbii9sabWnV9lChoBkdAZ/JPqLS/kGgHTUAGaAhHQKm5I5BC2MN1fZQoaAZHQGisrsByS3doB01ABmgIR0Cpx6JWmxdIdX2UKGgGR7+esxO+IuXeaAdNhQNoCEdAqcjQ/C66KHV9lChoBkdAP/1Y6nzg/GgHTUQEaAhHQKnLdMEidJ91fZQoaAZHQGoxBwl0HQhoB01ABmgIR0Cpy42KVII4dX2UKGgGR0BqngggX/HYaAdNQAZoCEdAqcvnU+cH4XV9lChoBkdAVSXfUF0PpmgHTYUFaAhHQKnMOvTw2EV1fZQoaAZHQGgHY6GQCCBoB01ABmgIR0CpzLSqMm4RdX2UKGgGR0BXkurU9ZA6aAdNHwZoCEdAqcz2ozeoDXV9lChoBkdAaZ9UHY6GQGgHTUAGaAhHQKnOMma6ST11fZQoaAZHQGnDjXvphWpoB01ABmgIR0CpzuNVinYQdX2UKGgGR8BNclsxfv4NaAdNYgFoCEdAqc+UXHim23V9lChoBkfATEIxL0z0pWgHTZkBaAhHQKnPthrnDBN1fZQoaAZHQGlkK1w5vLpoB01ABmgIR0Cp0DRJVbRndX2UKGgGR8BQNeCkGiYcaAdNUQFoCEdAqdB25c1O03V9lChoBkfAVucyDZlFt2gHTRwBaAhHQKnRLxc3VCp1fZQoaAZHQGekpFspG4JoB01ABmgIR0Cp0jS8zyjIdX2UKGgGR8AdOn3ta6jGaAdNJgRoCEdAqd56w6hg3XV9lChoBkdAZ3Ymmce8w2gHTUAGaAhHQKnekcn3L3d1fZQoaAZHQGkCmShakh1oB01ABmgIR0Cp3qvOyE+QdX2UKGgGR0Bpf1+y7f52aAdNQAZoCEdAqd7+yeI2wXV9lChoBkfAWySU/wAlwGgHSzZoCEdAqd898stkF3V9lChoBkfAWMZh4MWoFWgHS1loCEdAqd9wvzvqknV9lChoBkdAaBclANXo1WgHTUAGaAhHQKnfi96kZaV1fZQoaAZHQGdyS75Ec81oB01ABmgIR0Cp4vGMXJo1dX2UKGgGR0Agg606YE4eaAdNeQNoCEdAqeOLNyHVPXV9lChoBkdAJPgK4QSSNmgHTQgEaAhHQKnlobKifxt1fZQoaAZHQGdA7hvR7Z5oB01ABmgIR0Cp5twL/jsEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (346 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 202.9841383, "std_reward": 68.77660447661349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-09T17:05:38.535341"}