djovak commited on
Commit
dda6784
1 Parent(s): e837fb3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2534 -0
README.md ADDED
@@ -0,0 +1,2534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: multi-qa-MiniLM-L6-cos-v1
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 61.791044776119406
18
+ - type: ap
19
+ value: 25.829130082463124
20
+ - type: f1
21
+ value: 56.00432262887535
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 62.36077499999999
33
+ - type: ap
34
+ value: 57.68938427410222
35
+ - type: f1
36
+ value: 62.247666843818436
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 29.59
48
+ - type: f1
49
+ value: 29.241975951560622
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 25.249
61
+ - type: map_at_10
62
+ value: 40.196
63
+ - type: map_at_100
64
+ value: 41.336
65
+ - type: map_at_1000
66
+ value: 41.343
67
+ - type: map_at_3
68
+ value: 34.934
69
+ - type: map_at_5
70
+ value: 37.871
71
+ - type: mrr_at_1
72
+ value: 26.031
73
+ - type: mrr_at_10
74
+ value: 40.488
75
+ - type: mrr_at_100
76
+ value: 41.628
77
+ - type: mrr_at_1000
78
+ value: 41.634
79
+ - type: mrr_at_3
80
+ value: 35.171
81
+ - type: mrr_at_5
82
+ value: 38.126
83
+ - type: ndcg_at_1
84
+ value: 25.249
85
+ - type: ndcg_at_10
86
+ value: 49.11
87
+ - type: ndcg_at_100
88
+ value: 53.827999999999996
89
+ - type: ndcg_at_1000
90
+ value: 53.993
91
+ - type: ndcg_at_3
92
+ value: 38.175
93
+ - type: ndcg_at_5
94
+ value: 43.488
95
+ - type: precision_at_1
96
+ value: 25.249
97
+ - type: precision_at_10
98
+ value: 7.788
99
+ - type: precision_at_100
100
+ value: 0.9820000000000001
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 15.861
105
+ - type: precision_at_5
106
+ value: 12.105
107
+ - type: recall_at_1
108
+ value: 25.249
109
+ - type: recall_at_10
110
+ value: 77.881
111
+ - type: recall_at_100
112
+ value: 98.222
113
+ - type: recall_at_1000
114
+ value: 99.502
115
+ - type: recall_at_3
116
+ value: 47.582
117
+ - type: recall_at_5
118
+ value: 60.526
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 37.75242616816114
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 27.70031808300247
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 63.09199068762668
152
+ - type: mrr
153
+ value: 76.08055225783757
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 80.83007234777145
165
+ - type: cos_sim_spearman
166
+ value: 79.76446808992547
167
+ - type: euclidean_pearson
168
+ value: 80.24418669808917
169
+ - type: euclidean_spearman
170
+ value: 79.76446808992547
171
+ - type: manhattan_pearson
172
+ value: 79.58896133042379
173
+ - type: manhattan_spearman
174
+ value: 78.9614377441415
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 78.6038961038961
186
+ - type: f1
187
+ value: 77.95572823168757
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 30.240388191413935
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 22.670413424756212
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.694
221
+ - type: map_at_10
222
+ value: 43.811
223
+ - type: map_at_100
224
+ value: 45.274
225
+ - type: map_at_1000
226
+ value: 45.393
227
+ - type: map_at_3
228
+ value: 40.043
229
+ - type: map_at_5
230
+ value: 41.983
231
+ - type: mrr_at_1
232
+ value: 39.628
233
+ - type: mrr_at_10
234
+ value: 49.748
235
+ - type: mrr_at_100
236
+ value: 50.356
237
+ - type: mrr_at_1000
238
+ value: 50.39900000000001
239
+ - type: mrr_at_3
240
+ value: 46.924
241
+ - type: mrr_at_5
242
+ value: 48.598
243
+ - type: ndcg_at_1
244
+ value: 39.628
245
+ - type: ndcg_at_10
246
+ value: 50.39
247
+ - type: ndcg_at_100
248
+ value: 55.489
249
+ - type: ndcg_at_1000
250
+ value: 57.291000000000004
251
+ - type: ndcg_at_3
252
+ value: 44.849
253
+ - type: ndcg_at_5
254
+ value: 47.195
255
+ - type: precision_at_1
256
+ value: 39.628
257
+ - type: precision_at_10
258
+ value: 9.714
259
+ - type: precision_at_100
260
+ value: 1.591
261
+ - type: precision_at_1000
262
+ value: 0.2
263
+ - type: precision_at_3
264
+ value: 21.507
265
+ - type: precision_at_5
266
+ value: 15.393
267
+ - type: recall_at_1
268
+ value: 32.694
269
+ - type: recall_at_10
270
+ value: 63.031000000000006
271
+ - type: recall_at_100
272
+ value: 84.49
273
+ - type: recall_at_1000
274
+ value: 96.148
275
+ - type: recall_at_3
276
+ value: 46.851
277
+ - type: recall_at_5
278
+ value: 53.64
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 28.183000000000003
290
+ - type: map_at_10
291
+ value: 38.796
292
+ - type: map_at_100
293
+ value: 40.117000000000004
294
+ - type: map_at_1000
295
+ value: 40.251
296
+ - type: map_at_3
297
+ value: 35.713
298
+ - type: map_at_5
299
+ value: 37.446
300
+ - type: mrr_at_1
301
+ value: 35.605
302
+ - type: mrr_at_10
303
+ value: 44.824000000000005
304
+ - type: mrr_at_100
305
+ value: 45.544000000000004
306
+ - type: mrr_at_1000
307
+ value: 45.59
308
+ - type: mrr_at_3
309
+ value: 42.452
310
+ - type: mrr_at_5
311
+ value: 43.891999999999996
312
+ - type: ndcg_at_1
313
+ value: 35.605
314
+ - type: ndcg_at_10
315
+ value: 44.857
316
+ - type: ndcg_at_100
317
+ value: 49.68
318
+ - type: ndcg_at_1000
319
+ value: 51.841
320
+ - type: ndcg_at_3
321
+ value: 40.445
322
+ - type: ndcg_at_5
323
+ value: 42.535000000000004
324
+ - type: precision_at_1
325
+ value: 35.605
326
+ - type: precision_at_10
327
+ value: 8.624
328
+ - type: precision_at_100
329
+ value: 1.438
330
+ - type: precision_at_1000
331
+ value: 0.193
332
+ - type: precision_at_3
333
+ value: 19.808999999999997
334
+ - type: precision_at_5
335
+ value: 14.191
336
+ - type: recall_at_1
337
+ value: 28.183000000000003
338
+ - type: recall_at_10
339
+ value: 55.742000000000004
340
+ - type: recall_at_100
341
+ value: 76.416
342
+ - type: recall_at_1000
343
+ value: 90.20899999999999
344
+ - type: recall_at_3
345
+ value: 42.488
346
+ - type: recall_at_5
347
+ value: 48.431999999999995
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 36.156
359
+ - type: map_at_10
360
+ value: 47.677
361
+ - type: map_at_100
362
+ value: 48.699999999999996
363
+ - type: map_at_1000
364
+ value: 48.756
365
+ - type: map_at_3
366
+ value: 44.467
367
+ - type: map_at_5
368
+ value: 46.132
369
+ - type: mrr_at_1
370
+ value: 41.567
371
+ - type: mrr_at_10
372
+ value: 51.06699999999999
373
+ - type: mrr_at_100
374
+ value: 51.800000000000004
375
+ - type: mrr_at_1000
376
+ value: 51.827999999999996
377
+ - type: mrr_at_3
378
+ value: 48.620999999999995
379
+ - type: mrr_at_5
380
+ value: 50.013
381
+ - type: ndcg_at_1
382
+ value: 41.567
383
+ - type: ndcg_at_10
384
+ value: 53.418
385
+ - type: ndcg_at_100
386
+ value: 57.743
387
+ - type: ndcg_at_1000
388
+ value: 58.940000000000005
389
+ - type: ndcg_at_3
390
+ value: 47.923
391
+ - type: ndcg_at_5
392
+ value: 50.352
393
+ - type: precision_at_1
394
+ value: 41.567
395
+ - type: precision_at_10
396
+ value: 8.74
397
+ - type: precision_at_100
398
+ value: 1.1809999999999998
399
+ - type: precision_at_1000
400
+ value: 0.133
401
+ - type: precision_at_3
402
+ value: 21.337999999999997
403
+ - type: precision_at_5
404
+ value: 14.646
405
+ - type: recall_at_1
406
+ value: 36.156
407
+ - type: recall_at_10
408
+ value: 67.084
409
+ - type: recall_at_100
410
+ value: 86.299
411
+ - type: recall_at_1000
412
+ value: 94.82000000000001
413
+ - type: recall_at_3
414
+ value: 52.209
415
+ - type: recall_at_5
416
+ value: 58.175
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 23.513
428
+ - type: map_at_10
429
+ value: 32.699
430
+ - type: map_at_100
431
+ value: 33.788000000000004
432
+ - type: map_at_1000
433
+ value: 33.878
434
+ - type: map_at_3
435
+ value: 30.044999999999998
436
+ - type: map_at_5
437
+ value: 31.506
438
+ - type: mrr_at_1
439
+ value: 25.311
440
+ - type: mrr_at_10
441
+ value: 34.457
442
+ - type: mrr_at_100
443
+ value: 35.443999999999996
444
+ - type: mrr_at_1000
445
+ value: 35.504999999999995
446
+ - type: mrr_at_3
447
+ value: 31.902
448
+ - type: mrr_at_5
449
+ value: 33.36
450
+ - type: ndcg_at_1
451
+ value: 25.311
452
+ - type: ndcg_at_10
453
+ value: 37.929
454
+ - type: ndcg_at_100
455
+ value: 43.1
456
+ - type: ndcg_at_1000
457
+ value: 45.275999999999996
458
+ - type: ndcg_at_3
459
+ value: 32.745999999999995
460
+ - type: ndcg_at_5
461
+ value: 35.235
462
+ - type: precision_at_1
463
+ value: 25.311
464
+ - type: precision_at_10
465
+ value: 6.034
466
+ - type: precision_at_100
467
+ value: 0.8959999999999999
468
+ - type: precision_at_1000
469
+ value: 0.11299999999999999
470
+ - type: precision_at_3
471
+ value: 14.237
472
+ - type: precision_at_5
473
+ value: 10.034
474
+ - type: recall_at_1
475
+ value: 23.513
476
+ - type: recall_at_10
477
+ value: 52.312999999999995
478
+ - type: recall_at_100
479
+ value: 75.762
480
+ - type: recall_at_1000
481
+ value: 91.85799999999999
482
+ - type: recall_at_3
483
+ value: 38.222
484
+ - type: recall_at_5
485
+ value: 44.316
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 16.333000000000002
497
+ - type: map_at_10
498
+ value: 24.605
499
+ - type: map_at_100
500
+ value: 25.924000000000003
501
+ - type: map_at_1000
502
+ value: 26.039
503
+ - type: map_at_3
504
+ value: 21.907
505
+ - type: map_at_5
506
+ value: 23.294999999999998
507
+ - type: mrr_at_1
508
+ value: 20.647
509
+ - type: mrr_at_10
510
+ value: 29.442
511
+ - type: mrr_at_100
512
+ value: 30.54
513
+ - type: mrr_at_1000
514
+ value: 30.601
515
+ - type: mrr_at_3
516
+ value: 26.802999999999997
517
+ - type: mrr_at_5
518
+ value: 28.147
519
+ - type: ndcg_at_1
520
+ value: 20.647
521
+ - type: ndcg_at_10
522
+ value: 30.171999999999997
523
+ - type: ndcg_at_100
524
+ value: 36.466
525
+ - type: ndcg_at_1000
526
+ value: 39.095
527
+ - type: ndcg_at_3
528
+ value: 25.134
529
+ - type: ndcg_at_5
530
+ value: 27.211999999999996
531
+ - type: precision_at_1
532
+ value: 20.647
533
+ - type: precision_at_10
534
+ value: 5.659
535
+ - type: precision_at_100
536
+ value: 1.012
537
+ - type: precision_at_1000
538
+ value: 0.13899999999999998
539
+ - type: precision_at_3
540
+ value: 12.148
541
+ - type: precision_at_5
542
+ value: 8.881
543
+ - type: recall_at_1
544
+ value: 16.333000000000002
545
+ - type: recall_at_10
546
+ value: 42.785000000000004
547
+ - type: recall_at_100
548
+ value: 70.282
549
+ - type: recall_at_1000
550
+ value: 88.539
551
+ - type: recall_at_3
552
+ value: 28.307
553
+ - type: recall_at_5
554
+ value: 33.751
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 26.821
566
+ - type: map_at_10
567
+ value: 37.188
568
+ - type: map_at_100
569
+ value: 38.516
570
+ - type: map_at_1000
571
+ value: 38.635000000000005
572
+ - type: map_at_3
573
+ value: 33.821
574
+ - type: map_at_5
575
+ value: 35.646
576
+ - type: mrr_at_1
577
+ value: 33.109
578
+ - type: mrr_at_10
579
+ value: 43.003
580
+ - type: mrr_at_100
581
+ value: 43.849
582
+ - type: mrr_at_1000
583
+ value: 43.889
584
+ - type: mrr_at_3
585
+ value: 40.263
586
+ - type: mrr_at_5
587
+ value: 41.957
588
+ - type: ndcg_at_1
589
+ value: 33.109
590
+ - type: ndcg_at_10
591
+ value: 43.556
592
+ - type: ndcg_at_100
593
+ value: 49.197
594
+ - type: ndcg_at_1000
595
+ value: 51.269
596
+ - type: ndcg_at_3
597
+ value: 38.01
598
+ - type: ndcg_at_5
599
+ value: 40.647
600
+ - type: precision_at_1
601
+ value: 33.109
602
+ - type: precision_at_10
603
+ value: 8.085
604
+ - type: precision_at_100
605
+ value: 1.286
606
+ - type: precision_at_1000
607
+ value: 0.166
608
+ - type: precision_at_3
609
+ value: 18.191
610
+ - type: precision_at_5
611
+ value: 13.050999999999998
612
+ - type: recall_at_1
613
+ value: 26.821
614
+ - type: recall_at_10
615
+ value: 56.818000000000005
616
+ - type: recall_at_100
617
+ value: 80.63
618
+ - type: recall_at_1000
619
+ value: 94.042
620
+ - type: recall_at_3
621
+ value: 41.266000000000005
622
+ - type: recall_at_5
623
+ value: 48.087999999999994
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 22.169
635
+ - type: map_at_10
636
+ value: 31.682
637
+ - type: map_at_100
638
+ value: 32.988
639
+ - type: map_at_1000
640
+ value: 33.097
641
+ - type: map_at_3
642
+ value: 28.708
643
+ - type: map_at_5
644
+ value: 30.319000000000003
645
+ - type: mrr_at_1
646
+ value: 27.854
647
+ - type: mrr_at_10
648
+ value: 36.814
649
+ - type: mrr_at_100
650
+ value: 37.741
651
+ - type: mrr_at_1000
652
+ value: 37.798
653
+ - type: mrr_at_3
654
+ value: 34.418
655
+ - type: mrr_at_5
656
+ value: 35.742000000000004
657
+ - type: ndcg_at_1
658
+ value: 27.854
659
+ - type: ndcg_at_10
660
+ value: 37.388
661
+ - type: ndcg_at_100
662
+ value: 43.342999999999996
663
+ - type: ndcg_at_1000
664
+ value: 45.829
665
+ - type: ndcg_at_3
666
+ value: 32.512
667
+ - type: ndcg_at_5
668
+ value: 34.613
669
+ - type: precision_at_1
670
+ value: 27.854
671
+ - type: precision_at_10
672
+ value: 7.031999999999999
673
+ - type: precision_at_100
674
+ value: 1.18
675
+ - type: precision_at_1000
676
+ value: 0.158
677
+ - type: precision_at_3
678
+ value: 15.753
679
+ - type: precision_at_5
680
+ value: 11.301
681
+ - type: recall_at_1
682
+ value: 22.169
683
+ - type: recall_at_10
684
+ value: 49.44
685
+ - type: recall_at_100
686
+ value: 75.644
687
+ - type: recall_at_1000
688
+ value: 92.919
689
+ - type: recall_at_3
690
+ value: 35.528999999999996
691
+ - type: recall_at_5
692
+ value: 41.271
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackStatsRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 21.394
704
+ - type: map_at_10
705
+ value: 28.807
706
+ - type: map_at_100
707
+ value: 29.851
708
+ - type: map_at_1000
709
+ value: 29.959999999999997
710
+ - type: map_at_3
711
+ value: 26.694000000000003
712
+ - type: map_at_5
713
+ value: 27.805999999999997
714
+ - type: mrr_at_1
715
+ value: 23.773
716
+ - type: mrr_at_10
717
+ value: 30.895
718
+ - type: mrr_at_100
719
+ value: 31.894
720
+ - type: mrr_at_1000
721
+ value: 31.971
722
+ - type: mrr_at_3
723
+ value: 28.988000000000003
724
+ - type: mrr_at_5
725
+ value: 29.908
726
+ - type: ndcg_at_1
727
+ value: 23.773
728
+ - type: ndcg_at_10
729
+ value: 32.976
730
+ - type: ndcg_at_100
731
+ value: 38.109
732
+ - type: ndcg_at_1000
733
+ value: 40.797
734
+ - type: ndcg_at_3
735
+ value: 28.993999999999996
736
+ - type: ndcg_at_5
737
+ value: 30.659999999999997
738
+ - type: precision_at_1
739
+ value: 23.773
740
+ - type: precision_at_10
741
+ value: 5.2299999999999995
742
+ - type: precision_at_100
743
+ value: 0.857
744
+ - type: precision_at_1000
745
+ value: 0.117
746
+ - type: precision_at_3
747
+ value: 12.73
748
+ - type: precision_at_5
749
+ value: 8.741999999999999
750
+ - type: recall_at_1
751
+ value: 21.394
752
+ - type: recall_at_10
753
+ value: 43.75
754
+ - type: recall_at_100
755
+ value: 66.765
756
+ - type: recall_at_1000
757
+ value: 86.483
758
+ - type: recall_at_3
759
+ value: 32.542
760
+ - type: recall_at_5
761
+ value: 36.689
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackTexRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 16.266
773
+ - type: map_at_10
774
+ value: 23.639
775
+ - type: map_at_100
776
+ value: 24.814
777
+ - type: map_at_1000
778
+ value: 24.948
779
+ - type: map_at_3
780
+ value: 21.401999999999997
781
+ - type: map_at_5
782
+ value: 22.581
783
+ - type: mrr_at_1
784
+ value: 19.718
785
+ - type: mrr_at_10
786
+ value: 27.276
787
+ - type: mrr_at_100
788
+ value: 28.252
789
+ - type: mrr_at_1000
790
+ value: 28.33
791
+ - type: mrr_at_3
792
+ value: 25.086000000000002
793
+ - type: mrr_at_5
794
+ value: 26.304
795
+ - type: ndcg_at_1
796
+ value: 19.718
797
+ - type: ndcg_at_10
798
+ value: 28.254
799
+ - type: ndcg_at_100
800
+ value: 34.022999999999996
801
+ - type: ndcg_at_1000
802
+ value: 37.031
803
+ - type: ndcg_at_3
804
+ value: 24.206
805
+ - type: ndcg_at_5
806
+ value: 26.009
807
+ - type: precision_at_1
808
+ value: 19.718
809
+ - type: precision_at_10
810
+ value: 5.189
811
+ - type: precision_at_100
812
+ value: 0.9690000000000001
813
+ - type: precision_at_1000
814
+ value: 0.14200000000000002
815
+ - type: precision_at_3
816
+ value: 11.551
817
+ - type: precision_at_5
818
+ value: 8.362
819
+ - type: recall_at_1
820
+ value: 16.266
821
+ - type: recall_at_10
822
+ value: 38.550000000000004
823
+ - type: recall_at_100
824
+ value: 64.63499999999999
825
+ - type: recall_at_1000
826
+ value: 86.059
827
+ - type: recall_at_3
828
+ value: 27.156000000000002
829
+ - type: recall_at_5
830
+ value: 31.829
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackUnixRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 26.124000000000002
842
+ - type: map_at_10
843
+ value: 35.099000000000004
844
+ - type: map_at_100
845
+ value: 36.269
846
+ - type: map_at_1000
847
+ value: 36.388999999999996
848
+ - type: map_at_3
849
+ value: 32.017
850
+ - type: map_at_5
851
+ value: 33.614
852
+ - type: mrr_at_1
853
+ value: 31.25
854
+ - type: mrr_at_10
855
+ value: 39.269999999999996
856
+ - type: mrr_at_100
857
+ value: 40.134
858
+ - type: mrr_at_1000
859
+ value: 40.197
860
+ - type: mrr_at_3
861
+ value: 36.536
862
+ - type: mrr_at_5
863
+ value: 37.842
864
+ - type: ndcg_at_1
865
+ value: 31.25
866
+ - type: ndcg_at_10
867
+ value: 40.643
868
+ - type: ndcg_at_100
869
+ value: 45.967999999999996
870
+ - type: ndcg_at_1000
871
+ value: 48.455999999999996
872
+ - type: ndcg_at_3
873
+ value: 34.954
874
+ - type: ndcg_at_5
875
+ value: 37.273
876
+ - type: precision_at_1
877
+ value: 31.25
878
+ - type: precision_at_10
879
+ value: 6.894
880
+ - type: precision_at_100
881
+ value: 1.086
882
+ - type: precision_at_1000
883
+ value: 0.14200000000000002
884
+ - type: precision_at_3
885
+ value: 15.672
886
+ - type: precision_at_5
887
+ value: 11.082
888
+ - type: recall_at_1
889
+ value: 26.124000000000002
890
+ - type: recall_at_10
891
+ value: 53.730999999999995
892
+ - type: recall_at_100
893
+ value: 76.779
894
+ - type: recall_at_1000
895
+ value: 93.908
896
+ - type: recall_at_3
897
+ value: 37.869
898
+ - type: recall_at_5
899
+ value: 43.822
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackWebmastersRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 21.776
911
+ - type: map_at_10
912
+ value: 31.384
913
+ - type: map_at_100
914
+ value: 33.108
915
+ - type: map_at_1000
916
+ value: 33.339
917
+ - type: map_at_3
918
+ value: 28.269
919
+ - type: map_at_5
920
+ value: 30.108
921
+ - type: mrr_at_1
922
+ value: 26.482
923
+ - type: mrr_at_10
924
+ value: 35.876000000000005
925
+ - type: mrr_at_100
926
+ value: 36.887
927
+ - type: mrr_at_1000
928
+ value: 36.949
929
+ - type: mrr_at_3
930
+ value: 32.971000000000004
931
+ - type: mrr_at_5
932
+ value: 34.601
933
+ - type: ndcg_at_1
934
+ value: 26.482
935
+ - type: ndcg_at_10
936
+ value: 37.403999999999996
937
+ - type: ndcg_at_100
938
+ value: 43.722
939
+ - type: ndcg_at_1000
940
+ value: 46.417
941
+ - type: ndcg_at_3
942
+ value: 32.149
943
+ - type: ndcg_at_5
944
+ value: 34.818
945
+ - type: precision_at_1
946
+ value: 26.482
947
+ - type: precision_at_10
948
+ value: 7.411
949
+ - type: precision_at_100
950
+ value: 1.532
951
+ - type: precision_at_1000
952
+ value: 0.24
953
+ - type: precision_at_3
954
+ value: 15.152
955
+ - type: precision_at_5
956
+ value: 11.501999999999999
957
+ - type: recall_at_1
958
+ value: 21.776
959
+ - type: recall_at_10
960
+ value: 49.333
961
+ - type: recall_at_100
962
+ value: 76.753
963
+ - type: recall_at_1000
964
+ value: 93.762
965
+ - type: recall_at_3
966
+ value: 35.329
967
+ - type: recall_at_5
968
+ value: 41.82
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWordpressRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 18.990000000000002
980
+ - type: map_at_10
981
+ value: 26.721
982
+ - type: map_at_100
983
+ value: 27.833999999999996
984
+ - type: map_at_1000
985
+ value: 27.947
986
+ - type: map_at_3
987
+ value: 24.046
988
+ - type: map_at_5
989
+ value: 25.491999999999997
990
+ - type: mrr_at_1
991
+ value: 20.702
992
+ - type: mrr_at_10
993
+ value: 28.691
994
+ - type: mrr_at_100
995
+ value: 29.685
996
+ - type: mrr_at_1000
997
+ value: 29.764000000000003
998
+ - type: mrr_at_3
999
+ value: 26.124000000000002
1000
+ - type: mrr_at_5
1001
+ value: 27.584999999999997
1002
+ - type: ndcg_at_1
1003
+ value: 20.702
1004
+ - type: ndcg_at_10
1005
+ value: 31.473000000000003
1006
+ - type: ndcg_at_100
1007
+ value: 37.061
1008
+ - type: ndcg_at_1000
1009
+ value: 39.784000000000006
1010
+ - type: ndcg_at_3
1011
+ value: 26.221
1012
+ - type: ndcg_at_5
1013
+ value: 28.655
1014
+ - type: precision_at_1
1015
+ value: 20.702
1016
+ - type: precision_at_10
1017
+ value: 5.083
1018
+ - type: precision_at_100
1019
+ value: 0.8500000000000001
1020
+ - type: precision_at_1000
1021
+ value: 0.121
1022
+ - type: precision_at_3
1023
+ value: 11.275
1024
+ - type: precision_at_5
1025
+ value: 8.17
1026
+ - type: recall_at_1
1027
+ value: 18.990000000000002
1028
+ - type: recall_at_10
1029
+ value: 44.318999999999996
1030
+ - type: recall_at_100
1031
+ value: 69.98
1032
+ - type: recall_at_1000
1033
+ value: 90.171
1034
+ - type: recall_at_3
1035
+ value: 30.246000000000002
1036
+ - type: recall_at_5
1037
+ value: 35.927
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: climate-fever
1042
+ name: MTEB ClimateFEVER
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 9.584
1049
+ - type: map_at_10
1050
+ value: 16.148
1051
+ - type: map_at_100
1052
+ value: 17.727
1053
+ - type: map_at_1000
1054
+ value: 17.913999999999998
1055
+ - type: map_at_3
1056
+ value: 13.456000000000001
1057
+ - type: map_at_5
1058
+ value: 14.841999999999999
1059
+ - type: mrr_at_1
1060
+ value: 21.564
1061
+ - type: mrr_at_10
1062
+ value: 31.579
1063
+ - type: mrr_at_100
1064
+ value: 32.586999999999996
1065
+ - type: mrr_at_1000
1066
+ value: 32.638
1067
+ - type: mrr_at_3
1068
+ value: 28.294999999999998
1069
+ - type: mrr_at_5
1070
+ value: 30.064
1071
+ - type: ndcg_at_1
1072
+ value: 21.564
1073
+ - type: ndcg_at_10
1074
+ value: 23.294999999999998
1075
+ - type: ndcg_at_100
1076
+ value: 29.997
1077
+ - type: ndcg_at_1000
1078
+ value: 33.517
1079
+ - type: ndcg_at_3
1080
+ value: 18.759
1081
+ - type: ndcg_at_5
1082
+ value: 20.324
1083
+ - type: precision_at_1
1084
+ value: 21.564
1085
+ - type: precision_at_10
1086
+ value: 7.362
1087
+ - type: precision_at_100
1088
+ value: 1.451
1089
+ - type: precision_at_1000
1090
+ value: 0.21
1091
+ - type: precision_at_3
1092
+ value: 13.919999999999998
1093
+ - type: precision_at_5
1094
+ value: 10.879
1095
+ - type: recall_at_1
1096
+ value: 9.584
1097
+ - type: recall_at_10
1098
+ value: 28.508
1099
+ - type: recall_at_100
1100
+ value: 51.873999999999995
1101
+ - type: recall_at_1000
1102
+ value: 71.773
1103
+ - type: recall_at_3
1104
+ value: 17.329
1105
+ - type: recall_at_5
1106
+ value: 21.823
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: dbpedia-entity
1111
+ name: MTEB DBPedia
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 7.034
1118
+ - type: map_at_10
1119
+ value: 14.664
1120
+ - type: map_at_100
1121
+ value: 19.652
1122
+ - type: map_at_1000
1123
+ value: 20.701
1124
+ - type: map_at_3
1125
+ value: 10.626
1126
+ - type: map_at_5
1127
+ value: 12.334
1128
+ - type: mrr_at_1
1129
+ value: 54.0
1130
+ - type: mrr_at_10
1131
+ value: 63.132
1132
+ - type: mrr_at_100
1133
+ value: 63.639
1134
+ - type: mrr_at_1000
1135
+ value: 63.663000000000004
1136
+ - type: mrr_at_3
1137
+ value: 61.083
1138
+ - type: mrr_at_5
1139
+ value: 62.483
1140
+ - type: ndcg_at_1
1141
+ value: 42.875
1142
+ - type: ndcg_at_10
1143
+ value: 32.04
1144
+ - type: ndcg_at_100
1145
+ value: 35.157
1146
+ - type: ndcg_at_1000
1147
+ value: 41.4
1148
+ - type: ndcg_at_3
1149
+ value: 35.652
1150
+ - type: ndcg_at_5
1151
+ value: 33.617000000000004
1152
+ - type: precision_at_1
1153
+ value: 54.0
1154
+ - type: precision_at_10
1155
+ value: 25.55
1156
+ - type: precision_at_100
1157
+ value: 7.5600000000000005
1158
+ - type: precision_at_1000
1159
+ value: 1.577
1160
+ - type: precision_at_3
1161
+ value: 38.833
1162
+ - type: precision_at_5
1163
+ value: 33.15
1164
+ - type: recall_at_1
1165
+ value: 7.034
1166
+ - type: recall_at_10
1167
+ value: 19.627
1168
+ - type: recall_at_100
1169
+ value: 40.528
1170
+ - type: recall_at_1000
1171
+ value: 60.789
1172
+ - type: recall_at_3
1173
+ value: 11.833
1174
+ - type: recall_at_5
1175
+ value: 14.804
1176
+ - task:
1177
+ type: Classification
1178
+ dataset:
1179
+ type: mteb/emotion
1180
+ name: MTEB EmotionClassification
1181
+ config: default
1182
+ split: test
1183
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1184
+ metrics:
1185
+ - type: accuracy
1186
+ value: 39.6
1187
+ - type: f1
1188
+ value: 35.3770765501984
1189
+ - task:
1190
+ type: Retrieval
1191
+ dataset:
1192
+ type: fever
1193
+ name: MTEB FEVER
1194
+ config: default
1195
+ split: test
1196
+ revision: None
1197
+ metrics:
1198
+ - type: map_at_1
1199
+ value: 35.098
1200
+ - type: map_at_10
1201
+ value: 46.437
1202
+ - type: map_at_100
1203
+ value: 47.156
1204
+ - type: map_at_1000
1205
+ value: 47.193000000000005
1206
+ - type: map_at_3
1207
+ value: 43.702000000000005
1208
+ - type: map_at_5
1209
+ value: 45.326
1210
+ - type: mrr_at_1
1211
+ value: 37.774
1212
+ - type: mrr_at_10
1213
+ value: 49.512
1214
+ - type: mrr_at_100
1215
+ value: 50.196
1216
+ - type: mrr_at_1000
1217
+ value: 50.224000000000004
1218
+ - type: mrr_at_3
1219
+ value: 46.747
1220
+ - type: mrr_at_5
1221
+ value: 48.415
1222
+ - type: ndcg_at_1
1223
+ value: 37.774
1224
+ - type: ndcg_at_10
1225
+ value: 52.629000000000005
1226
+ - type: ndcg_at_100
1227
+ value: 55.995
1228
+ - type: ndcg_at_1000
1229
+ value: 56.962999999999994
1230
+ - type: ndcg_at_3
1231
+ value: 47.188
1232
+ - type: ndcg_at_5
1233
+ value: 50.019000000000005
1234
+ - type: precision_at_1
1235
+ value: 37.774
1236
+ - type: precision_at_10
1237
+ value: 7.541
1238
+ - type: precision_at_100
1239
+ value: 0.931
1240
+ - type: precision_at_1000
1241
+ value: 0.10300000000000001
1242
+ - type: precision_at_3
1243
+ value: 19.572
1244
+ - type: precision_at_5
1245
+ value: 13.288
1246
+ - type: recall_at_1
1247
+ value: 35.098
1248
+ - type: recall_at_10
1249
+ value: 68.818
1250
+ - type: recall_at_100
1251
+ value: 84.004
1252
+ - type: recall_at_1000
1253
+ value: 91.36800000000001
1254
+ - type: recall_at_3
1255
+ value: 54.176
1256
+ - type: recall_at_5
1257
+ value: 60.968999999999994
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fiqa
1262
+ name: MTEB FiQA2018
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 17.982
1269
+ - type: map_at_10
1270
+ value: 28.994999999999997
1271
+ - type: map_at_100
1272
+ value: 30.868000000000002
1273
+ - type: map_at_1000
1274
+ value: 31.045
1275
+ - type: map_at_3
1276
+ value: 25.081999999999997
1277
+ - type: map_at_5
1278
+ value: 27.303
1279
+ - type: mrr_at_1
1280
+ value: 35.031
1281
+ - type: mrr_at_10
1282
+ value: 43.537
1283
+ - type: mrr_at_100
1284
+ value: 44.422
1285
+ - type: mrr_at_1000
1286
+ value: 44.471
1287
+ - type: mrr_at_3
1288
+ value: 41.024
1289
+ - type: mrr_at_5
1290
+ value: 42.42
1291
+ - type: ndcg_at_1
1292
+ value: 35.031
1293
+ - type: ndcg_at_10
1294
+ value: 36.346000000000004
1295
+ - type: ndcg_at_100
1296
+ value: 43.275000000000006
1297
+ - type: ndcg_at_1000
1298
+ value: 46.577
1299
+ - type: ndcg_at_3
1300
+ value: 32.42
1301
+ - type: ndcg_at_5
1302
+ value: 33.841
1303
+ - type: precision_at_1
1304
+ value: 35.031
1305
+ - type: precision_at_10
1306
+ value: 10.231
1307
+ - type: precision_at_100
1308
+ value: 1.728
1309
+ - type: precision_at_1000
1310
+ value: 0.231
1311
+ - type: precision_at_3
1312
+ value: 21.553
1313
+ - type: precision_at_5
1314
+ value: 16.204
1315
+ - type: recall_at_1
1316
+ value: 17.982
1317
+ - type: recall_at_10
1318
+ value: 43.169000000000004
1319
+ - type: recall_at_100
1320
+ value: 68.812
1321
+ - type: recall_at_1000
1322
+ value: 89.008
1323
+ - type: recall_at_3
1324
+ value: 29.309
1325
+ - type: recall_at_5
1326
+ value: 35.514
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: hotpotqa
1331
+ name: MTEB HotpotQA
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 27.387
1338
+ - type: map_at_10
1339
+ value: 36.931000000000004
1340
+ - type: map_at_100
1341
+ value: 37.734
1342
+ - type: map_at_1000
1343
+ value: 37.818000000000005
1344
+ - type: map_at_3
1345
+ value: 34.691
1346
+ - type: map_at_5
1347
+ value: 36.016999999999996
1348
+ - type: mrr_at_1
1349
+ value: 54.774
1350
+ - type: mrr_at_10
1351
+ value: 62.133
1352
+ - type: mrr_at_100
1353
+ value: 62.587
1354
+ - type: mrr_at_1000
1355
+ value: 62.61600000000001
1356
+ - type: mrr_at_3
1357
+ value: 60.49099999999999
1358
+ - type: mrr_at_5
1359
+ value: 61.480999999999995
1360
+ - type: ndcg_at_1
1361
+ value: 54.774
1362
+ - type: ndcg_at_10
1363
+ value: 45.657
1364
+ - type: ndcg_at_100
1365
+ value: 48.954
1366
+ - type: ndcg_at_1000
1367
+ value: 50.78
1368
+ - type: ndcg_at_3
1369
+ value: 41.808
1370
+ - type: ndcg_at_5
1371
+ value: 43.816
1372
+ - type: precision_at_1
1373
+ value: 54.774
1374
+ - type: precision_at_10
1375
+ value: 9.479
1376
+ - type: precision_at_100
1377
+ value: 1.208
1378
+ - type: precision_at_1000
1379
+ value: 0.145
1380
+ - type: precision_at_3
1381
+ value: 25.856
1382
+ - type: precision_at_5
1383
+ value: 17.102
1384
+ - type: recall_at_1
1385
+ value: 27.387
1386
+ - type: recall_at_10
1387
+ value: 47.394
1388
+ - type: recall_at_100
1389
+ value: 60.397999999999996
1390
+ - type: recall_at_1000
1391
+ value: 72.54599999999999
1392
+ - type: recall_at_3
1393
+ value: 38.785
1394
+ - type: recall_at_5
1395
+ value: 42.754999999999995
1396
+ - task:
1397
+ type: Classification
1398
+ dataset:
1399
+ type: mteb/imdb
1400
+ name: MTEB ImdbClassification
1401
+ config: default
1402
+ split: test
1403
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1404
+ metrics:
1405
+ - type: accuracy
1406
+ value: 61.217999999999996
1407
+ - type: ap
1408
+ value: 56.84286974948407
1409
+ - type: f1
1410
+ value: 60.99211195455131
1411
+ - task:
1412
+ type: Retrieval
1413
+ dataset:
1414
+ type: msmarco
1415
+ name: MTEB MSMARCO
1416
+ config: default
1417
+ split: dev
1418
+ revision: None
1419
+ metrics:
1420
+ - type: map_at_1
1421
+ value: 19.224
1422
+ - type: map_at_10
1423
+ value: 30.448999999999998
1424
+ - type: map_at_100
1425
+ value: 31.663999999999998
1426
+ - type: map_at_1000
1427
+ value: 31.721
1428
+ - type: map_at_3
1429
+ value: 26.922
1430
+ - type: map_at_5
1431
+ value: 28.906
1432
+ - type: mrr_at_1
1433
+ value: 19.756
1434
+ - type: mrr_at_10
1435
+ value: 30.994
1436
+ - type: mrr_at_100
1437
+ value: 32.161
1438
+ - type: mrr_at_1000
1439
+ value: 32.213
1440
+ - type: mrr_at_3
1441
+ value: 27.502
1442
+ - type: mrr_at_5
1443
+ value: 29.48
1444
+ - type: ndcg_at_1
1445
+ value: 19.742
1446
+ - type: ndcg_at_10
1447
+ value: 36.833
1448
+ - type: ndcg_at_100
1449
+ value: 42.785000000000004
1450
+ - type: ndcg_at_1000
1451
+ value: 44.291000000000004
1452
+ - type: ndcg_at_3
1453
+ value: 29.580000000000002
1454
+ - type: ndcg_at_5
1455
+ value: 33.139
1456
+ - type: precision_at_1
1457
+ value: 19.742
1458
+ - type: precision_at_10
1459
+ value: 5.894
1460
+ - type: precision_at_100
1461
+ value: 0.889
1462
+ - type: precision_at_1000
1463
+ value: 0.10200000000000001
1464
+ - type: precision_at_3
1465
+ value: 12.665000000000001
1466
+ - type: precision_at_5
1467
+ value: 9.393
1468
+ - type: recall_at_1
1469
+ value: 19.224
1470
+ - type: recall_at_10
1471
+ value: 56.538999999999994
1472
+ - type: recall_at_100
1473
+ value: 84.237
1474
+ - type: recall_at_1000
1475
+ value: 95.965
1476
+ - type: recall_at_3
1477
+ value: 36.71
1478
+ - type: recall_at_5
1479
+ value: 45.283
1480
+ - task:
1481
+ type: Classification
1482
+ dataset:
1483
+ type: mteb/mtop_domain
1484
+ name: MTEB MTOPDomainClassification (en)
1485
+ config: en
1486
+ split: test
1487
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1488
+ metrics:
1489
+ - type: accuracy
1490
+ value: 89.97264021887824
1491
+ - type: f1
1492
+ value: 89.53607318488027
1493
+ - task:
1494
+ type: Classification
1495
+ dataset:
1496
+ type: mteb/mtop_intent
1497
+ name: MTEB MTOPIntentClassification (en)
1498
+ config: en
1499
+ split: test
1500
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1501
+ metrics:
1502
+ - type: accuracy
1503
+ value: 59.566803465572285
1504
+ - type: f1
1505
+ value: 40.94003955225124
1506
+ - task:
1507
+ type: Classification
1508
+ dataset:
1509
+ type: mteb/amazon_massive_intent
1510
+ name: MTEB MassiveIntentClassification (en)
1511
+ config: en
1512
+ split: test
1513
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1514
+ metrics:
1515
+ - type: accuracy
1516
+ value: 66.7787491593813
1517
+ - type: f1
1518
+ value: 64.51190971513093
1519
+ - task:
1520
+ type: Classification
1521
+ dataset:
1522
+ type: mteb/amazon_massive_scenario
1523
+ name: MTEB MassiveScenarioClassification (en)
1524
+ config: en
1525
+ split: test
1526
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1527
+ metrics:
1528
+ - type: accuracy
1529
+ value: 73.7794216543376
1530
+ - type: f1
1531
+ value: 72.71852261076475
1532
+ - task:
1533
+ type: Clustering
1534
+ dataset:
1535
+ type: mteb/medrxiv-clustering-p2p
1536
+ name: MTEB MedrxivClusteringP2P
1537
+ config: default
1538
+ split: test
1539
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1540
+ metrics:
1541
+ - type: v_measure
1542
+ value: 28.40883054472429
1543
+ - task:
1544
+ type: Clustering
1545
+ dataset:
1546
+ type: mteb/medrxiv-clustering-s2s
1547
+ name: MTEB MedrxivClusteringS2S
1548
+ config: default
1549
+ split: test
1550
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1551
+ metrics:
1552
+ - type: v_measure
1553
+ value: 26.144338339113617
1554
+ - task:
1555
+ type: Reranking
1556
+ dataset:
1557
+ type: mteb/mind_small
1558
+ name: MTEB MindSmallReranking
1559
+ config: default
1560
+ split: test
1561
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1562
+ metrics:
1563
+ - type: map
1564
+ value: 30.894071459751267
1565
+ - type: mrr
1566
+ value: 31.965886150526256
1567
+ - task:
1568
+ type: Retrieval
1569
+ dataset:
1570
+ type: nfcorpus
1571
+ name: MTEB NFCorpus
1572
+ config: default
1573
+ split: test
1574
+ revision: None
1575
+ metrics:
1576
+ - type: map_at_1
1577
+ value: 5.024
1578
+ - type: map_at_10
1579
+ value: 10.533
1580
+ - type: map_at_100
1581
+ value: 12.97
1582
+ - type: map_at_1000
1583
+ value: 14.163
1584
+ - type: map_at_3
1585
+ value: 7.971
1586
+ - type: map_at_5
1587
+ value: 9.15
1588
+ - type: mrr_at_1
1589
+ value: 40.867
1590
+ - type: mrr_at_10
1591
+ value: 48.837
1592
+ - type: mrr_at_100
1593
+ value: 49.464999999999996
1594
+ - type: mrr_at_1000
1595
+ value: 49.509
1596
+ - type: mrr_at_3
1597
+ value: 46.800999999999995
1598
+ - type: mrr_at_5
1599
+ value: 47.745
1600
+ - type: ndcg_at_1
1601
+ value: 38.854
1602
+ - type: ndcg_at_10
1603
+ value: 29.674
1604
+ - type: ndcg_at_100
1605
+ value: 26.66
1606
+ - type: ndcg_at_1000
1607
+ value: 35.088
1608
+ - type: ndcg_at_3
1609
+ value: 34.838
1610
+ - type: ndcg_at_5
1611
+ value: 32.423
1612
+ - type: precision_at_1
1613
+ value: 40.248
1614
+ - type: precision_at_10
1615
+ value: 21.826999999999998
1616
+ - type: precision_at_100
1617
+ value: 6.78
1618
+ - type: precision_at_1000
1619
+ value: 1.889
1620
+ - type: precision_at_3
1621
+ value: 32.405
1622
+ - type: precision_at_5
1623
+ value: 27.74
1624
+ - type: recall_at_1
1625
+ value: 5.024
1626
+ - type: recall_at_10
1627
+ value: 13.996
1628
+ - type: recall_at_100
1629
+ value: 26.636
1630
+ - type: recall_at_1000
1631
+ value: 57.816
1632
+ - type: recall_at_3
1633
+ value: 9.063
1634
+ - type: recall_at_5
1635
+ value: 10.883
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nq
1640
+ name: MTEB NQ
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 23.088
1647
+ - type: map_at_10
1648
+ value: 36.915
1649
+ - type: map_at_100
1650
+ value: 38.141999999999996
1651
+ - type: map_at_1000
1652
+ value: 38.191
1653
+ - type: map_at_3
1654
+ value: 32.458999999999996
1655
+ - type: map_at_5
1656
+ value: 35.004999999999995
1657
+ - type: mrr_at_1
1658
+ value: 26.101000000000003
1659
+ - type: mrr_at_10
1660
+ value: 39.1
1661
+ - type: mrr_at_100
1662
+ value: 40.071
1663
+ - type: mrr_at_1000
1664
+ value: 40.106
1665
+ - type: mrr_at_3
1666
+ value: 35.236000000000004
1667
+ - type: mrr_at_5
1668
+ value: 37.43
1669
+ - type: ndcg_at_1
1670
+ value: 26.072
1671
+ - type: ndcg_at_10
1672
+ value: 44.482
1673
+ - type: ndcg_at_100
1674
+ value: 49.771
1675
+ - type: ndcg_at_1000
1676
+ value: 50.903
1677
+ - type: ndcg_at_3
1678
+ value: 35.922
1679
+ - type: ndcg_at_5
1680
+ value: 40.178000000000004
1681
+ - type: precision_at_1
1682
+ value: 26.072
1683
+ - type: precision_at_10
1684
+ value: 7.795000000000001
1685
+ - type: precision_at_100
1686
+ value: 1.072
1687
+ - type: precision_at_1000
1688
+ value: 0.11800000000000001
1689
+ - type: precision_at_3
1690
+ value: 16.725
1691
+ - type: precision_at_5
1692
+ value: 12.468
1693
+ - type: recall_at_1
1694
+ value: 23.088
1695
+ - type: recall_at_10
1696
+ value: 65.534
1697
+ - type: recall_at_100
1698
+ value: 88.68
1699
+ - type: recall_at_1000
1700
+ value: 97.101
1701
+ - type: recall_at_3
1702
+ value: 43.161
1703
+ - type: recall_at_5
1704
+ value: 52.959999999999994
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: quora
1709
+ name: MTEB QuoraRetrieval
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 69.612
1716
+ - type: map_at_10
1717
+ value: 83.292
1718
+ - type: map_at_100
1719
+ value: 83.96000000000001
1720
+ - type: map_at_1000
1721
+ value: 83.978
1722
+ - type: map_at_3
1723
+ value: 80.26299999999999
1724
+ - type: map_at_5
1725
+ value: 82.11500000000001
1726
+ - type: mrr_at_1
1727
+ value: 80.21000000000001
1728
+ - type: mrr_at_10
1729
+ value: 86.457
1730
+ - type: mrr_at_100
1731
+ value: 86.58500000000001
1732
+ - type: mrr_at_1000
1733
+ value: 86.587
1734
+ - type: mrr_at_3
1735
+ value: 85.452
1736
+ - type: mrr_at_5
1737
+ value: 86.101
1738
+ - type: ndcg_at_1
1739
+ value: 80.21000000000001
1740
+ - type: ndcg_at_10
1741
+ value: 87.208
1742
+ - type: ndcg_at_100
1743
+ value: 88.549
1744
+ - type: ndcg_at_1000
1745
+ value: 88.683
1746
+ - type: ndcg_at_3
1747
+ value: 84.20400000000001
1748
+ - type: ndcg_at_5
1749
+ value: 85.768
1750
+ - type: precision_at_1
1751
+ value: 80.21000000000001
1752
+ - type: precision_at_10
1753
+ value: 13.29
1754
+ - type: precision_at_100
1755
+ value: 1.5230000000000001
1756
+ - type: precision_at_1000
1757
+ value: 0.156
1758
+ - type: precision_at_3
1759
+ value: 36.767
1760
+ - type: precision_at_5
1761
+ value: 24.2
1762
+ - type: recall_at_1
1763
+ value: 69.612
1764
+ - type: recall_at_10
1765
+ value: 94.651
1766
+ - type: recall_at_100
1767
+ value: 99.297
1768
+ - type: recall_at_1000
1769
+ value: 99.95100000000001
1770
+ - type: recall_at_3
1771
+ value: 86.003
1772
+ - type: recall_at_5
1773
+ value: 90.45100000000001
1774
+ - task:
1775
+ type: Clustering
1776
+ dataset:
1777
+ type: mteb/reddit-clustering
1778
+ name: MTEB RedditClustering
1779
+ config: default
1780
+ split: test
1781
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1782
+ metrics:
1783
+ - type: v_measure
1784
+ value: 46.28945925252077
1785
+ - task:
1786
+ type: Clustering
1787
+ dataset:
1788
+ type: mteb/reddit-clustering-p2p
1789
+ name: MTEB RedditClusteringP2P
1790
+ config: default
1791
+ split: test
1792
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1793
+ metrics:
1794
+ - type: v_measure
1795
+ value: 50.954446620859684
1796
+ - task:
1797
+ type: Retrieval
1798
+ dataset:
1799
+ type: scidocs
1800
+ name: MTEB SCIDOCS
1801
+ config: default
1802
+ split: test
1803
+ revision: None
1804
+ metrics:
1805
+ - type: map_at_1
1806
+ value: 3.888
1807
+ - type: map_at_10
1808
+ value: 9.21
1809
+ - type: map_at_100
1810
+ value: 10.629
1811
+ - type: map_at_1000
1812
+ value: 10.859
1813
+ - type: map_at_3
1814
+ value: 6.743
1815
+ - type: map_at_5
1816
+ value: 7.982
1817
+ - type: mrr_at_1
1818
+ value: 19.1
1819
+ - type: mrr_at_10
1820
+ value: 28.294000000000004
1821
+ - type: mrr_at_100
1822
+ value: 29.326999999999998
1823
+ - type: mrr_at_1000
1824
+ value: 29.414
1825
+ - type: mrr_at_3
1826
+ value: 25.367
1827
+ - type: mrr_at_5
1828
+ value: 27.002
1829
+ - type: ndcg_at_1
1830
+ value: 19.1
1831
+ - type: ndcg_at_10
1832
+ value: 15.78
1833
+ - type: ndcg_at_100
1834
+ value: 21.807000000000002
1835
+ - type: ndcg_at_1000
1836
+ value: 26.593
1837
+ - type: ndcg_at_3
1838
+ value: 15.204999999999998
1839
+ - type: ndcg_at_5
1840
+ value: 13.217
1841
+ - type: precision_at_1
1842
+ value: 19.1
1843
+ - type: precision_at_10
1844
+ value: 7.9799999999999995
1845
+ - type: precision_at_100
1846
+ value: 1.667
1847
+ - type: precision_at_1000
1848
+ value: 0.28300000000000003
1849
+ - type: precision_at_3
1850
+ value: 13.933000000000002
1851
+ - type: precision_at_5
1852
+ value: 11.379999999999999
1853
+ - type: recall_at_1
1854
+ value: 3.888
1855
+ - type: recall_at_10
1856
+ value: 16.17
1857
+ - type: recall_at_100
1858
+ value: 33.848
1859
+ - type: recall_at_1000
1860
+ value: 57.345
1861
+ - type: recall_at_3
1862
+ value: 8.468
1863
+ - type: recall_at_5
1864
+ value: 11.540000000000001
1865
+ - task:
1866
+ type: STS
1867
+ dataset:
1868
+ type: mteb/sickr-sts
1869
+ name: MTEB SICK-R
1870
+ config: default
1871
+ split: test
1872
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1873
+ metrics:
1874
+ - type: cos_sim_pearson
1875
+ value: 79.05803116288386
1876
+ - type: cos_sim_spearman
1877
+ value: 70.0403855402571
1878
+ - type: euclidean_pearson
1879
+ value: 75.59006280166072
1880
+ - type: euclidean_spearman
1881
+ value: 70.04038926247613
1882
+ - type: manhattan_pearson
1883
+ value: 75.48136278078455
1884
+ - type: manhattan_spearman
1885
+ value: 69.9608897701754
1886
+ - task:
1887
+ type: STS
1888
+ dataset:
1889
+ type: mteb/sts12-sts
1890
+ name: MTEB STS12
1891
+ config: default
1892
+ split: test
1893
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1894
+ metrics:
1895
+ - type: cos_sim_pearson
1896
+ value: 68.56836430603597
1897
+ - type: cos_sim_spearman
1898
+ value: 64.38407759822387
1899
+ - type: euclidean_pearson
1900
+ value: 65.93619045541732
1901
+ - type: euclidean_spearman
1902
+ value: 64.38184049884836
1903
+ - type: manhattan_pearson
1904
+ value: 65.97148637646873
1905
+ - type: manhattan_spearman
1906
+ value: 64.48011982438929
1907
+ - task:
1908
+ type: STS
1909
+ dataset:
1910
+ type: mteb/sts13-sts
1911
+ name: MTEB STS13
1912
+ config: default
1913
+ split: test
1914
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1915
+ metrics:
1916
+ - type: cos_sim_pearson
1917
+ value: 75.990362280318
1918
+ - type: cos_sim_spearman
1919
+ value: 76.40621890996734
1920
+ - type: euclidean_pearson
1921
+ value: 76.01739766577184
1922
+ - type: euclidean_spearman
1923
+ value: 76.4062736496846
1924
+ - type: manhattan_pearson
1925
+ value: 76.04738378838042
1926
+ - type: manhattan_spearman
1927
+ value: 76.44991409719592
1928
+ - task:
1929
+ type: STS
1930
+ dataset:
1931
+ type: mteb/sts14-sts
1932
+ name: MTEB STS14
1933
+ config: default
1934
+ split: test
1935
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1936
+ metrics:
1937
+ - type: cos_sim_pearson
1938
+ value: 74.8516957692617
1939
+ - type: cos_sim_spearman
1940
+ value: 69.325199098278
1941
+ - type: euclidean_pearson
1942
+ value: 73.37922793254768
1943
+ - type: euclidean_spearman
1944
+ value: 69.32520119670215
1945
+ - type: manhattan_pearson
1946
+ value: 73.3795212376615
1947
+ - type: manhattan_spearman
1948
+ value: 69.35306787926315
1949
+ - task:
1950
+ type: STS
1951
+ dataset:
1952
+ type: mteb/sts15-sts
1953
+ name: MTEB STS15
1954
+ config: default
1955
+ split: test
1956
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1957
+ metrics:
1958
+ - type: cos_sim_pearson
1959
+ value: 78.644002190612
1960
+ - type: cos_sim_spearman
1961
+ value: 80.18337978181648
1962
+ - type: euclidean_pearson
1963
+ value: 79.7628642371887
1964
+ - type: euclidean_spearman
1965
+ value: 80.18337906907526
1966
+ - type: manhattan_pearson
1967
+ value: 79.68810722704522
1968
+ - type: manhattan_spearman
1969
+ value: 80.10664518173466
1970
+ - task:
1971
+ type: STS
1972
+ dataset:
1973
+ type: mteb/sts16-sts
1974
+ name: MTEB STS16
1975
+ config: default
1976
+ split: test
1977
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1978
+ metrics:
1979
+ - type: cos_sim_pearson
1980
+ value: 77.8303940874723
1981
+ - type: cos_sim_spearman
1982
+ value: 79.56812599677549
1983
+ - type: euclidean_pearson
1984
+ value: 79.38928950396344
1985
+ - type: euclidean_spearman
1986
+ value: 79.56812556750812
1987
+ - type: manhattan_pearson
1988
+ value: 79.41057583507681
1989
+ - type: manhattan_spearman
1990
+ value: 79.57604428731142
1991
+ - task:
1992
+ type: STS
1993
+ dataset:
1994
+ type: mteb/sts17-crosslingual-sts
1995
+ name: MTEB STS17 (en-en)
1996
+ config: en-en
1997
+ split: test
1998
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1999
+ metrics:
2000
+ - type: cos_sim_pearson
2001
+ value: 78.90792116013353
2002
+ - type: cos_sim_spearman
2003
+ value: 81.18059230233499
2004
+ - type: euclidean_pearson
2005
+ value: 80.2622631297375
2006
+ - type: euclidean_spearman
2007
+ value: 81.18059230233499
2008
+ - type: manhattan_pearson
2009
+ value: 80.23946026135997
2010
+ - type: manhattan_spearman
2011
+ value: 81.11947325071426
2012
+ - task:
2013
+ type: STS
2014
+ dataset:
2015
+ type: mteb/sts22-crosslingual-sts
2016
+ name: MTEB STS22 (en)
2017
+ config: en
2018
+ split: test
2019
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2020
+ metrics:
2021
+ - type: cos_sim_pearson
2022
+ value: 64.46850619973324
2023
+ - type: cos_sim_spearman
2024
+ value: 65.50839374141563
2025
+ - type: euclidean_pearson
2026
+ value: 66.60130812260707
2027
+ - type: euclidean_spearman
2028
+ value: 65.50839374141563
2029
+ - type: manhattan_pearson
2030
+ value: 66.58871918195092
2031
+ - type: manhattan_spearman
2032
+ value: 65.7347325297592
2033
+ - task:
2034
+ type: STS
2035
+ dataset:
2036
+ type: mteb/stsbenchmark-sts
2037
+ name: MTEB STSBenchmark
2038
+ config: default
2039
+ split: test
2040
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2041
+ metrics:
2042
+ - type: cos_sim_pearson
2043
+ value: 75.71536124107834
2044
+ - type: cos_sim_spearman
2045
+ value: 75.98365906208434
2046
+ - type: euclidean_pearson
2047
+ value: 76.64573753881218
2048
+ - type: euclidean_spearman
2049
+ value: 75.98365906208434
2050
+ - type: manhattan_pearson
2051
+ value: 76.63637189172626
2052
+ - type: manhattan_spearman
2053
+ value: 75.9660207821009
2054
+ - task:
2055
+ type: Reranking
2056
+ dataset:
2057
+ type: mteb/scidocs-reranking
2058
+ name: MTEB SciDocsRR
2059
+ config: default
2060
+ split: test
2061
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2062
+ metrics:
2063
+ - type: map
2064
+ value: 74.27669440147513
2065
+ - type: mrr
2066
+ value: 91.7729356699945
2067
+ - task:
2068
+ type: Retrieval
2069
+ dataset:
2070
+ type: scifact
2071
+ name: MTEB SciFact
2072
+ config: default
2073
+ split: test
2074
+ revision: None
2075
+ metrics:
2076
+ - type: map_at_1
2077
+ value: 41.028
2078
+ - type: map_at_10
2079
+ value: 49.919000000000004
2080
+ - type: map_at_100
2081
+ value: 50.91
2082
+ - type: map_at_1000
2083
+ value: 50.955
2084
+ - type: map_at_3
2085
+ value: 47.785
2086
+ - type: map_at_5
2087
+ value: 49.084
2088
+ - type: mrr_at_1
2089
+ value: 43.667
2090
+ - type: mrr_at_10
2091
+ value: 51.342
2092
+ - type: mrr_at_100
2093
+ value: 52.197
2094
+ - type: mrr_at_1000
2095
+ value: 52.236000000000004
2096
+ - type: mrr_at_3
2097
+ value: 49.667
2098
+ - type: mrr_at_5
2099
+ value: 50.766999999999996
2100
+ - type: ndcg_at_1
2101
+ value: 43.667
2102
+ - type: ndcg_at_10
2103
+ value: 54.029
2104
+ - type: ndcg_at_100
2105
+ value: 58.909
2106
+ - type: ndcg_at_1000
2107
+ value: 60.131
2108
+ - type: ndcg_at_3
2109
+ value: 50.444
2110
+ - type: ndcg_at_5
2111
+ value: 52.354
2112
+ - type: precision_at_1
2113
+ value: 43.667
2114
+ - type: precision_at_10
2115
+ value: 7.432999999999999
2116
+ - type: precision_at_100
2117
+ value: 1.0
2118
+ - type: precision_at_1000
2119
+ value: 0.11100000000000002
2120
+ - type: precision_at_3
2121
+ value: 20.444000000000003
2122
+ - type: precision_at_5
2123
+ value: 13.533000000000001
2124
+ - type: recall_at_1
2125
+ value: 41.028
2126
+ - type: recall_at_10
2127
+ value: 65.011
2128
+ - type: recall_at_100
2129
+ value: 88.033
2130
+ - type: recall_at_1000
2131
+ value: 97.667
2132
+ - type: recall_at_3
2133
+ value: 55.394
2134
+ - type: recall_at_5
2135
+ value: 60.183
2136
+ - task:
2137
+ type: PairClassification
2138
+ dataset:
2139
+ type: mteb/sprintduplicatequestions-pairclassification
2140
+ name: MTEB SprintDuplicateQuestions
2141
+ config: default
2142
+ split: test
2143
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2144
+ metrics:
2145
+ - type: cos_sim_accuracy
2146
+ value: 99.76534653465346
2147
+ - type: cos_sim_ap
2148
+ value: 93.83756773536699
2149
+ - type: cos_sim_f1
2150
+ value: 87.91097622660598
2151
+ - type: cos_sim_precision
2152
+ value: 88.94575230296827
2153
+ - type: cos_sim_recall
2154
+ value: 86.9
2155
+ - type: dot_accuracy
2156
+ value: 99.76534653465346
2157
+ - type: dot_ap
2158
+ value: 93.83756773536699
2159
+ - type: dot_f1
2160
+ value: 87.91097622660598
2161
+ - type: dot_precision
2162
+ value: 88.94575230296827
2163
+ - type: dot_recall
2164
+ value: 86.9
2165
+ - type: euclidean_accuracy
2166
+ value: 99.76534653465346
2167
+ - type: euclidean_ap
2168
+ value: 93.837567735367
2169
+ - type: euclidean_f1
2170
+ value: 87.91097622660598
2171
+ - type: euclidean_precision
2172
+ value: 88.94575230296827
2173
+ - type: euclidean_recall
2174
+ value: 86.9
2175
+ - type: manhattan_accuracy
2176
+ value: 99.76633663366337
2177
+ - type: manhattan_ap
2178
+ value: 93.84480825492724
2179
+ - type: manhattan_f1
2180
+ value: 87.97145769622833
2181
+ - type: manhattan_precision
2182
+ value: 89.70893970893971
2183
+ - type: manhattan_recall
2184
+ value: 86.3
2185
+ - type: max_accuracy
2186
+ value: 99.76633663366337
2187
+ - type: max_ap
2188
+ value: 93.84480825492724
2189
+ - type: max_f1
2190
+ value: 87.97145769622833
2191
+ - task:
2192
+ type: Clustering
2193
+ dataset:
2194
+ type: mteb/stackexchange-clustering
2195
+ name: MTEB StackExchangeClustering
2196
+ config: default
2197
+ split: test
2198
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2199
+ metrics:
2200
+ - type: v_measure
2201
+ value: 48.078155553339585
2202
+ - task:
2203
+ type: Clustering
2204
+ dataset:
2205
+ type: mteb/stackexchange-clustering-p2p
2206
+ name: MTEB StackExchangeClusteringP2P
2207
+ config: default
2208
+ split: test
2209
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2210
+ metrics:
2211
+ - type: v_measure
2212
+ value: 33.34857297824906
2213
+ - task:
2214
+ type: Reranking
2215
+ dataset:
2216
+ type: mteb/stackoverflowdupquestions-reranking
2217
+ name: MTEB StackOverflowDupQuestions
2218
+ config: default
2219
+ split: test
2220
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2221
+ metrics:
2222
+ - type: map
2223
+ value: 50.06219491505384
2224
+ - type: mrr
2225
+ value: 50.77479097699686
2226
+ - task:
2227
+ type: Summarization
2228
+ dataset:
2229
+ type: mteb/summeval
2230
+ name: MTEB SummEval
2231
+ config: default
2232
+ split: test
2233
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2234
+ metrics:
2235
+ - type: cos_sim_pearson
2236
+ value: 30.48401937651373
2237
+ - type: cos_sim_spearman
2238
+ value: 31.048654273022606
2239
+ - type: dot_pearson
2240
+ value: 30.484020082707847
2241
+ - type: dot_spearman
2242
+ value: 31.048654273022606
2243
+ - task:
2244
+ type: Retrieval
2245
+ dataset:
2246
+ type: trec-covid
2247
+ name: MTEB TRECCOVID
2248
+ config: default
2249
+ split: test
2250
+ revision: None
2251
+ metrics:
2252
+ - type: map_at_1
2253
+ value: 0.183
2254
+ - type: map_at_10
2255
+ value: 1.32
2256
+ - type: map_at_100
2257
+ value: 7.01
2258
+ - type: map_at_1000
2259
+ value: 16.957
2260
+ - type: map_at_3
2261
+ value: 0.481
2262
+ - type: map_at_5
2263
+ value: 0.737
2264
+ - type: mrr_at_1
2265
+ value: 66.0
2266
+ - type: mrr_at_10
2267
+ value: 78.7
2268
+ - type: mrr_at_100
2269
+ value: 78.7
2270
+ - type: mrr_at_1000
2271
+ value: 78.7
2272
+ - type: mrr_at_3
2273
+ value: 76.0
2274
+ - type: mrr_at_5
2275
+ value: 78.7
2276
+ - type: ndcg_at_1
2277
+ value: 56.99999999999999
2278
+ - type: ndcg_at_10
2279
+ value: 55.846
2280
+ - type: ndcg_at_100
2281
+ value: 43.138
2282
+ - type: ndcg_at_1000
2283
+ value: 39.4
2284
+ - type: ndcg_at_3
2285
+ value: 57.306999999999995
2286
+ - type: ndcg_at_5
2287
+ value: 57.294
2288
+ - type: precision_at_1
2289
+ value: 66.0
2290
+ - type: precision_at_10
2291
+ value: 60.0
2292
+ - type: precision_at_100
2293
+ value: 44.6
2294
+ - type: precision_at_1000
2295
+ value: 17.8
2296
+ - type: precision_at_3
2297
+ value: 62.0
2298
+ - type: precision_at_5
2299
+ value: 62.0
2300
+ - type: recall_at_1
2301
+ value: 0.183
2302
+ - type: recall_at_10
2303
+ value: 1.583
2304
+ - type: recall_at_100
2305
+ value: 10.412
2306
+ - type: recall_at_1000
2307
+ value: 37.358999999999995
2308
+ - type: recall_at_3
2309
+ value: 0.516
2310
+ - type: recall_at_5
2311
+ value: 0.845
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: webis-touche2020
2316
+ name: MTEB Touche2020
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 1.7420000000000002
2323
+ - type: map_at_10
2324
+ value: 6.4879999999999995
2325
+ - type: map_at_100
2326
+ value: 11.654
2327
+ - type: map_at_1000
2328
+ value: 13.23
2329
+ - type: map_at_3
2330
+ value: 3.148
2331
+ - type: map_at_5
2332
+ value: 4.825
2333
+ - type: mrr_at_1
2334
+ value: 18.367
2335
+ - type: mrr_at_10
2336
+ value: 30.258000000000003
2337
+ - type: mrr_at_100
2338
+ value: 31.570999999999998
2339
+ - type: mrr_at_1000
2340
+ value: 31.594
2341
+ - type: mrr_at_3
2342
+ value: 26.19
2343
+ - type: mrr_at_5
2344
+ value: 28.027
2345
+ - type: ndcg_at_1
2346
+ value: 15.306000000000001
2347
+ - type: ndcg_at_10
2348
+ value: 15.608
2349
+ - type: ndcg_at_100
2350
+ value: 28.808
2351
+ - type: ndcg_at_1000
2352
+ value: 41.603
2353
+ - type: ndcg_at_3
2354
+ value: 13.357
2355
+ - type: ndcg_at_5
2356
+ value: 15.306000000000001
2357
+ - type: precision_at_1
2358
+ value: 18.367
2359
+ - type: precision_at_10
2360
+ value: 15.101999999999999
2361
+ - type: precision_at_100
2362
+ value: 6.49
2363
+ - type: precision_at_1000
2364
+ value: 1.488
2365
+ - type: precision_at_3
2366
+ value: 14.966
2367
+ - type: precision_at_5
2368
+ value: 17.143
2369
+ - type: recall_at_1
2370
+ value: 1.7420000000000002
2371
+ - type: recall_at_10
2372
+ value: 12.267
2373
+ - type: recall_at_100
2374
+ value: 41.105999999999995
2375
+ - type: recall_at_1000
2376
+ value: 80.569
2377
+ - type: recall_at_3
2378
+ value: 4.009
2379
+ - type: recall_at_5
2380
+ value: 7.417999999999999
2381
+ - task:
2382
+ type: Classification
2383
+ dataset:
2384
+ type: mteb/toxic_conversations_50k
2385
+ name: MTEB ToxicConversationsClassification
2386
+ config: default
2387
+ split: test
2388
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2389
+ metrics:
2390
+ - type: accuracy
2391
+ value: 65.1178
2392
+ - type: ap
2393
+ value: 11.974961582206614
2394
+ - type: f1
2395
+ value: 50.24491996814835
2396
+ - task:
2397
+ type: Classification
2398
+ dataset:
2399
+ type: mteb/tweet_sentiment_extraction
2400
+ name: MTEB TweetSentimentExtractionClassification
2401
+ config: default
2402
+ split: test
2403
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2404
+ metrics:
2405
+ - type: accuracy
2406
+ value: 51.63271080928127
2407
+ - type: f1
2408
+ value: 51.81589904316042
2409
+ - task:
2410
+ type: Clustering
2411
+ dataset:
2412
+ type: mteb/twentynewsgroups-clustering
2413
+ name: MTEB TwentyNewsgroupsClustering
2414
+ config: default
2415
+ split: test
2416
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2417
+ metrics:
2418
+ - type: v_measure
2419
+ value: 40.791709673552276
2420
+ - task:
2421
+ type: PairClassification
2422
+ dataset:
2423
+ type: mteb/twittersemeval2015-pairclassification
2424
+ name: MTEB TwitterSemEval2015
2425
+ config: default
2426
+ split: test
2427
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2428
+ metrics:
2429
+ - type: cos_sim_accuracy
2430
+ value: 83.05418131966383
2431
+ - type: cos_sim_ap
2432
+ value: 64.72353098186304
2433
+ - type: cos_sim_f1
2434
+ value: 61.313330054107226
2435
+ - type: cos_sim_precision
2436
+ value: 57.415937356057114
2437
+ - type: cos_sim_recall
2438
+ value: 65.77836411609499
2439
+ - type: dot_accuracy
2440
+ value: 83.05418131966383
2441
+ - type: dot_ap
2442
+ value: 64.72352701424393
2443
+ - type: dot_f1
2444
+ value: 61.313330054107226
2445
+ - type: dot_precision
2446
+ value: 57.415937356057114
2447
+ - type: dot_recall
2448
+ value: 65.77836411609499
2449
+ - type: euclidean_accuracy
2450
+ value: 83.05418131966383
2451
+ - type: euclidean_ap
2452
+ value: 64.72353124585976
2453
+ - type: euclidean_f1
2454
+ value: 61.313330054107226
2455
+ - type: euclidean_precision
2456
+ value: 57.415937356057114
2457
+ - type: euclidean_recall
2458
+ value: 65.77836411609499
2459
+ - type: manhattan_accuracy
2460
+ value: 82.98861536627525
2461
+ - type: manhattan_ap
2462
+ value: 64.53981837182303
2463
+ - type: manhattan_f1
2464
+ value: 60.94911377930246
2465
+ - type: manhattan_precision
2466
+ value: 53.784056508577194
2467
+ - type: manhattan_recall
2468
+ value: 70.31662269129288
2469
+ - type: max_accuracy
2470
+ value: 83.05418131966383
2471
+ - type: max_ap
2472
+ value: 64.72353124585976
2473
+ - type: max_f1
2474
+ value: 61.313330054107226
2475
+ - task:
2476
+ type: PairClassification
2477
+ dataset:
2478
+ type: mteb/twitterurlcorpus-pairclassification
2479
+ name: MTEB TwitterURLCorpus
2480
+ config: default
2481
+ split: test
2482
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2483
+ metrics:
2484
+ - type: cos_sim_accuracy
2485
+ value: 88.06225016493966
2486
+ - type: cos_sim_ap
2487
+ value: 84.00829172423475
2488
+ - type: cos_sim_f1
2489
+ value: 76.1288446157202
2490
+ - type: cos_sim_precision
2491
+ value: 72.11737153877945
2492
+ - type: cos_sim_recall
2493
+ value: 80.61287342161995
2494
+ - type: dot_accuracy
2495
+ value: 88.06225016493966
2496
+ - type: dot_ap
2497
+ value: 84.00827913374181
2498
+ - type: dot_f1
2499
+ value: 76.1288446157202
2500
+ - type: dot_precision
2501
+ value: 72.11737153877945
2502
+ - type: dot_recall
2503
+ value: 80.61287342161995
2504
+ - type: euclidean_accuracy
2505
+ value: 88.06225016493966
2506
+ - type: euclidean_ap
2507
+ value: 84.00827099295034
2508
+ - type: euclidean_f1
2509
+ value: 76.1288446157202
2510
+ - type: euclidean_precision
2511
+ value: 72.11737153877945
2512
+ - type: euclidean_recall
2513
+ value: 80.61287342161995
2514
+ - type: manhattan_accuracy
2515
+ value: 88.05642876547523
2516
+ - type: manhattan_ap
2517
+ value: 83.9157542691417
2518
+ - type: manhattan_f1
2519
+ value: 76.09045667447307
2520
+ - type: manhattan_precision
2521
+ value: 72.50348675034869
2522
+ - type: manhattan_recall
2523
+ value: 80.05081613797351
2524
+ - type: max_accuracy
2525
+ value: 88.06225016493966
2526
+ - type: max_ap
2527
+ value: 84.00829172423475
2528
+ - type: max_f1
2529
+ value: 76.1288446157202
2530
+ ---
2531
+
2532
+ MTEB evaluation results on English language for 'multi-qa-MiniLM-L6-cos-v1' sbert model
2533
+
2534
+ Model and licence can be found [here](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1)