tortoise5x / tortoise /models /random_latent_generator.py
djkesu's picture
Added all documents for inference
3e423f6
raw
history blame
1.65 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2**0.5):
if bias is not None:
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return (
F.leaky_relu(
input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope,
)
* scale
)
else:
return F.leaky_relu(input, negative_slope=0.2) * scale
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
return out
class RandomLatentConverter(nn.Module):
def __init__(self, channels):
super().__init__()
self.layers = nn.Sequential(
*[EqualLinear(channels, channels, lr_mul=0.1) for _ in range(5)],
nn.Linear(channels, channels)
)
self.channels = channels
def forward(self, ref):
r = torch.randn(ref.shape[0], self.channels, device=ref.device)
y = self.layers(r)
return y
if __name__ == "__main__":
model = RandomLatentConverter(512)
model(torch.randn(5, 512))