|
|
|
import argparse |
|
import os |
|
|
|
import torch |
|
from api import TextToSpeech |
|
|
|
from tortoise.utils.audio import get_voices, load_required_audio |
|
|
|
""" |
|
Dumps the conditioning latents for the specified voice to disk. These are expressive latents which can be used for |
|
other ML models, or can be augmented manually and fed back into Tortoise to affect vocal qualities. |
|
""" |
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--voice", |
|
type=str, |
|
help="Selects the voice to convert to conditioning latents", |
|
default="pat2", |
|
) |
|
parser.add_argument( |
|
"--output_path", |
|
type=str, |
|
help="Where to store outputs.", |
|
default="../results/conditioning_latents", |
|
) |
|
parser.add_argument( |
|
"--latent_averaging_mode", |
|
type=int, |
|
help="How to average voice latents, 0 for standard, 1 for per-sample, 2 for per-minichunk", |
|
default=0, |
|
) |
|
|
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
tts = TextToSpeech() |
|
voices = get_voices() |
|
print(list(voices.keys())) |
|
selected_voices = args.voice.split(",") |
|
for voice in selected_voices: |
|
cond_paths = voices[voice] |
|
conds = [] |
|
for cond_path in cond_paths: |
|
c = load_required_audio(cond_path) |
|
conds.append(c) |
|
conditioning_latents = tts.get_conditioning_latents( |
|
conds, latent_averaging_mode=args.latent_averaging_mode |
|
) |
|
torch.save(conditioning_latents, os.path.join(args.output_path, f"{voice}.pth")) |
|
|