|
import math |
|
from collections import namedtuple |
|
from functools import partial |
|
from inspect import isfunction |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from torch import einsum, nn |
|
|
|
DEFAULT_DIM_HEAD = 64 |
|
|
|
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) |
|
|
|
LayerIntermediates = namedtuple( |
|
"Intermediates", |
|
[ |
|
"hiddens", |
|
"attn_intermediates", |
|
"past_key_values", |
|
], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def cast_tuple(val, depth): |
|
return val if isinstance(val, tuple) else (val,) * depth |
|
|
|
|
|
class always: |
|
def __init__(self, val): |
|
self.val = val |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self.val |
|
|
|
|
|
class not_equals: |
|
def __init__(self, val): |
|
self.val = val |
|
|
|
def __call__(self, x, *args, **kwargs): |
|
return x != self.val |
|
|
|
|
|
class equals: |
|
def __init__(self, val): |
|
self.val = val |
|
|
|
def __call__(self, x, *args, **kwargs): |
|
return x == self.val |
|
|
|
|
|
def max_neg_value(tensor): |
|
return -torch.finfo(tensor.dtype).max |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, p=2, dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
def init_zero_(layer): |
|
nn.init.constant_(layer.weight, 0.0) |
|
if exists(layer.bias): |
|
nn.init.constant_(layer.bias, 0.0) |
|
|
|
|
|
|
|
|
|
|
|
def pick_and_pop(keys, d): |
|
values = list(map(lambda key: d.pop(key), keys)) |
|
return dict(zip(keys, values)) |
|
|
|
|
|
def group_dict_by_key(cond, d): |
|
return_val = [dict(), dict()] |
|
for key in d.keys(): |
|
match = bool(cond(key)) |
|
ind = int(not match) |
|
return_val[ind][key] = d[key] |
|
return (*return_val,) |
|
|
|
|
|
def string_begins_with(prefix, str): |
|
return str.startswith(prefix) |
|
|
|
|
|
def group_by_key_prefix(prefix, d): |
|
return group_dict_by_key(partial(string_begins_with, prefix), d) |
|
|
|
|
|
def groupby_prefix_and_trim(prefix, d): |
|
kwargs_with_prefix, kwargs = group_dict_by_key( |
|
partial(string_begins_with, prefix), d |
|
) |
|
kwargs_without_prefix = dict( |
|
map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items())) |
|
) |
|
return kwargs_without_prefix, kwargs |
|
|
|
|
|
|
|
|
|
|
|
class ReluSquared(nn.Module): |
|
def forward(self, x): |
|
return F.relu(x) ** 2 |
|
|
|
|
|
|
|
|
|
|
|
class AbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim, max_seq_len): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.emb = nn.Embedding(max_seq_len, dim) |
|
|
|
def forward(self, x): |
|
n = torch.arange(x.shape[1], device=x.device) |
|
pos_emb = self.emb(n) |
|
pos_emb = rearrange(pos_emb, "n d -> () n d") |
|
return pos_emb * self.scale |
|
|
|
|
|
class FixedPositionalEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, x, seq_dim=1, offset=0): |
|
t = ( |
|
torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) |
|
+ offset |
|
) |
|
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) |
|
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) |
|
return rearrange(emb, "n d -> () n d") |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): |
|
super().__init__() |
|
self.scale = scale |
|
self.causal = causal |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.relative_attention_bias = nn.Embedding(num_buckets, heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket( |
|
relative_position, causal=True, num_buckets=32, max_distance=128 |
|
): |
|
ret = 0 |
|
n = -relative_position |
|
if not causal: |
|
num_buckets //= 2 |
|
ret += (n < 0).long() * num_buckets |
|
n = torch.abs(n) |
|
else: |
|
n = torch.max(n, torch.zeros_like(n)) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = n < max_exact |
|
|
|
val_if_large = ( |
|
max_exact |
|
+ ( |
|
torch.log(n.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).long() |
|
) |
|
val_if_large = torch.min( |
|
val_if_large, torch.full_like(val_if_large, num_buckets - 1) |
|
) |
|
|
|
ret += torch.where(is_small, n, val_if_large) |
|
return ret |
|
|
|
def forward(self, qk_dots): |
|
i, j, device = *qk_dots.shape[-2:], qk_dots.device |
|
q_pos = torch.arange(i, dtype=torch.long, device=device) |
|
k_pos = torch.arange(j, dtype=torch.long, device=device) |
|
rel_pos = k_pos[None, :] - q_pos[:, None] |
|
rp_bucket = self._relative_position_bucket( |
|
rel_pos, |
|
causal=self.causal, |
|
num_buckets=self.num_buckets, |
|
max_distance=self.max_distance, |
|
) |
|
values = self.relative_attention_bias(rp_bucket) |
|
bias = rearrange(values, "i j h -> () h i j") |
|
return qk_dots + (bias * self.scale) |
|
|
|
|
|
class AlibiPositionalBias(nn.Module): |
|
def __init__(self, heads, **kwargs): |
|
super().__init__() |
|
self.heads = heads |
|
slopes = torch.Tensor(self._get_slopes(heads)) |
|
slopes = rearrange(slopes, "h -> () h () ()") |
|
self.register_buffer("slopes", slopes, persistent=False) |
|
self.register_buffer("bias", None, persistent=False) |
|
|
|
@staticmethod |
|
def _get_slopes(heads): |
|
def get_slopes_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio**i for i in range(n)] |
|
|
|
if math.log2(heads).is_integer(): |
|
return get_slopes_power_of_2(heads) |
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(heads)) |
|
return ( |
|
get_slopes_power_of_2(closest_power_of_2) |
|
+ get_slopes_power_of_2(2 * closest_power_of_2)[0::2][ |
|
: heads - closest_power_of_2 |
|
] |
|
) |
|
|
|
def forward(self, qk_dots): |
|
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device |
|
|
|
if exists(self.bias) and self.bias.shape[-1] >= j: |
|
return qk_dots + self.bias[..., :j] |
|
|
|
bias = torch.arange(j, device=device) |
|
bias = rearrange(bias, "j -> () () () j") |
|
bias = bias * self.slopes |
|
|
|
num_heads_unalibied = h - bias.shape[1] |
|
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) |
|
|
|
self.register_buffer("bias", bias, persistent=False) |
|
return qk_dots + self.bias |
|
|
|
|
|
class LearnedAlibiPositionalBias(AlibiPositionalBias): |
|
def __init__(self, heads, bidirectional=False): |
|
super().__init__(heads) |
|
los_slopes = torch.log(self.slopes) |
|
self.learned_logslopes = nn.Parameter(los_slopes) |
|
|
|
self.bidirectional = bidirectional |
|
if self.bidirectional: |
|
self.learned_logslopes_future = nn.Parameter(los_slopes) |
|
|
|
def forward(self, qk_dots): |
|
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device |
|
|
|
def get_slopes(param): |
|
return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1])) |
|
|
|
if exists(self.bias) and self.bias.shape[-1] >= j: |
|
bias = self.bias[..., :i, :j] |
|
else: |
|
i_arange = torch.arange(i, device=device) |
|
j_arange = torch.arange(j, device=device) |
|
bias = rearrange(j_arange, "j -> 1 1 1 j") - rearrange( |
|
i_arange, "i -> 1 1 i 1" |
|
) |
|
self.register_buffer("bias", bias, persistent=False) |
|
|
|
if self.bidirectional: |
|
past_slopes = get_slopes(self.learned_logslopes) |
|
future_slopes = get_slopes(self.learned_logslopes_future) |
|
bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes) |
|
else: |
|
slopes = get_slopes(self.learned_logslopes) |
|
bias = bias * slopes |
|
|
|
return qk_dots + bias |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, max_seq_len, device): |
|
t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i , j -> i j", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
return rearrange(emb, "n d -> () () n d") |
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, "... (j d) -> ... j d", j=2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(t, freqs): |
|
seq_len = t.shape[-2] |
|
freqs = freqs[:, :, -seq_len:] |
|
return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) |
|
|
|
|
|
|
|
|
|
|
|
class Scale(nn.Module): |
|
def __init__(self, value, fn): |
|
super().__init__() |
|
self.value = value |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
out = self.fn(x, **kwargs) |
|
|
|
def scale_fn(t): |
|
return t * self.value |
|
|
|
if not isinstance(out, tuple): |
|
return scale_fn(out) |
|
|
|
return (scale_fn(out[0]), *out[1:]) |
|
|
|
|
|
class Rezero(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.g = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward(self, x, **kwargs): |
|
out = self.fn(x, **kwargs) |
|
|
|
def rezero_fn(t): |
|
return t * self.g |
|
|
|
if not isinstance(out, tuple): |
|
return rezero_fn(out) |
|
|
|
return (rezero_fn(out[0]), *out[1:]) |
|
|
|
|
|
class ScaleNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-5): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(1)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale |
|
return x / norm.clamp(min=self.eps) * self.g |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-8): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale |
|
return x / norm.clamp(min=self.eps) * self.g |
|
|
|
|
|
class RMSScaleShiftNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-8): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(dim)) |
|
self.scale_shift_process = nn.Linear(dim * 2, dim * 2) |
|
|
|
def forward(self, x, norm_scale_shift_inp): |
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale |
|
norm = x / norm.clamp(min=self.eps) * self.g |
|
|
|
ss_emb = self.scale_shift_process(norm_scale_shift_inp) |
|
scale, shift = torch.chunk(ss_emb, 2, dim=1) |
|
h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
return h |
|
|
|
|
|
|
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, dim, scale_residual=False): |
|
super().__init__() |
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None |
|
|
|
def forward(self, x, residual): |
|
if exists(self.residual_scale): |
|
residual = residual * self.residual_scale |
|
|
|
return x + residual |
|
|
|
|
|
class GRUGating(nn.Module): |
|
def __init__(self, dim, scale_residual=False): |
|
super().__init__() |
|
self.gru = nn.GRUCell(dim, dim) |
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None |
|
|
|
def forward(self, x, residual): |
|
if exists(self.residual_scale): |
|
residual = residual * self.residual_scale |
|
|
|
gated_output = self.gru( |
|
rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d") |
|
) |
|
|
|
return gated_output.reshape_as(x) |
|
|
|
|
|
|
|
|
|
|
|
def shift(t, amount, mask=None): |
|
if amount == 0: |
|
return t |
|
|
|
if exists(mask): |
|
t = t.masked_fill(~mask[..., None], 0.0) |
|
|
|
return F.pad(t, (0, 0, amount, -amount), value=0.0) |
|
|
|
|
|
class ShiftTokens(nn.Module): |
|
def __init__(self, shifts, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.shifts = tuple(shifts) |
|
|
|
def forward(self, x, **kwargs): |
|
mask = kwargs.get("mask", None) |
|
shifts = self.shifts |
|
segments = len(shifts) |
|
feats_per_shift = x.shape[-1] // segments |
|
splitted = x.split(feats_per_shift, dim=-1) |
|
segments_to_shift, rest = splitted[:segments], splitted[segments:] |
|
segments_to_shift = list( |
|
map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts)) |
|
) |
|
x = torch.cat((*segments_to_shift, *rest), dim=-1) |
|
return self.fn(x, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
class GLU(nn.Module): |
|
def __init__(self, dim_in, dim_out, activation): |
|
super().__init__() |
|
self.act = activation |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * self.act(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_out=None, |
|
mult=4, |
|
glu=False, |
|
relu_squared=False, |
|
post_act_ln=False, |
|
dropout=0.0, |
|
zero_init_output=False, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
activation = ReluSquared() if relu_squared else nn.GELU() |
|
|
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), activation) |
|
if not glu |
|
else GLU(dim, inner_dim, activation) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, |
|
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), |
|
nn.Dropout(dropout), |
|
nn.Linear(inner_dim, dim_out), |
|
) |
|
|
|
|
|
if zero_init_output: |
|
init_zero_(self.net[-1]) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_head=DEFAULT_DIM_HEAD, |
|
heads=8, |
|
causal=False, |
|
talking_heads=False, |
|
head_scale=False, |
|
collab_heads=False, |
|
collab_compression=0.3, |
|
sparse_topk=None, |
|
use_entmax15=False, |
|
num_mem_kv=0, |
|
dropout=0.0, |
|
on_attn=False, |
|
gate_values=False, |
|
zero_init_output=False, |
|
max_attend_past=None, |
|
qk_norm=False, |
|
scale_init_value=None, |
|
rel_pos_bias=False, |
|
rel_pos_num_buckets=32, |
|
rel_pos_max_distance=128, |
|
): |
|
super().__init__() |
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
self.causal = causal |
|
self.max_attend_past = max_attend_past |
|
|
|
qk_dim = v_dim = dim_head * heads |
|
|
|
|
|
self.collab_heads = collab_heads |
|
if self.collab_heads: |
|
qk_dim = int(collab_compression * qk_dim) |
|
self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) |
|
|
|
self.to_q = nn.Linear(dim, qk_dim, bias=False) |
|
self.to_k = nn.Linear(dim, qk_dim, bias=False) |
|
self.to_v = nn.Linear(dim, v_dim, bias=False) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
self.to_v_gate = None |
|
if gate_values: |
|
self.to_v_gate = nn.Linear(dim, v_dim) |
|
nn.init.constant_(self.to_v_gate.weight, 0) |
|
nn.init.constant_(self.to_v_gate.bias, 1) |
|
|
|
|
|
self.qk_norm = qk_norm |
|
if qk_norm: |
|
scale_init_value = default( |
|
scale_init_value, -3 |
|
) |
|
self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value) |
|
|
|
|
|
self.talking_heads = talking_heads |
|
if talking_heads: |
|
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) |
|
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) |
|
|
|
|
|
self.head_scale = head_scale |
|
if head_scale: |
|
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) |
|
|
|
|
|
self.sparse_topk = sparse_topk |
|
|
|
|
|
self.attn_fn = F.softmax |
|
|
|
|
|
self.num_mem_kv = num_mem_kv |
|
if num_mem_kv > 0: |
|
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) |
|
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) |
|
|
|
|
|
self.attn_on_attn = on_attn |
|
self.to_out = ( |
|
nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) |
|
if on_attn |
|
else nn.Linear(v_dim, dim) |
|
) |
|
|
|
self.rel_pos_bias = rel_pos_bias |
|
if rel_pos_bias: |
|
assert ( |
|
rel_pos_num_buckets <= rel_pos_max_distance |
|
), "number of relative position buckets must be less than the relative position max distance" |
|
self.rel_pos = RelativePositionBias( |
|
scale=dim_head**0.5, |
|
causal=causal, |
|
heads=heads, |
|
num_buckets=rel_pos_num_buckets, |
|
max_distance=rel_pos_max_distance, |
|
) |
|
|
|
|
|
if zero_init_output: |
|
init_zero_(self.to_out) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
context_mask=None, |
|
attn_mask=None, |
|
sinusoidal_emb=None, |
|
rotary_pos_emb=None, |
|
prev_attn=None, |
|
mem=None, |
|
layer_past=None, |
|
): |
|
( |
|
b, |
|
n, |
|
_, |
|
h, |
|
talking_heads, |
|
collab_heads, |
|
head_scale, |
|
scale, |
|
device, |
|
has_context, |
|
) = ( |
|
*x.shape, |
|
self.heads, |
|
self.talking_heads, |
|
self.collab_heads, |
|
self.head_scale, |
|
self.scale, |
|
x.device, |
|
exists(context), |
|
) |
|
kv_input = default(context, x) |
|
|
|
q_input = x |
|
k_input = kv_input |
|
v_input = kv_input |
|
|
|
if exists(mem): |
|
k_input = torch.cat((mem, k_input), dim=-2) |
|
v_input = torch.cat((mem, v_input), dim=-2) |
|
|
|
if exists(sinusoidal_emb): |
|
|
|
offset = k_input.shape[-2] - q_input.shape[-2] |
|
q_input = q_input + sinusoidal_emb(q_input, offset=offset) |
|
k_input = k_input + sinusoidal_emb(k_input) |
|
|
|
q = self.to_q(q_input) |
|
k = self.to_k(k_input) |
|
v = self.to_v(v_input) |
|
|
|
if not collab_heads: |
|
q, k, v = map( |
|
lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v) |
|
) |
|
else: |
|
q = einsum("b i d, h d -> b h i d", q, self.collab_mixing) |
|
k = rearrange(k, "b n d -> b () n d") |
|
v = rearrange(v, "b n (h d) -> b h n d", h=h) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
k = torch.cat([past_key, k], dim=-2) |
|
v = torch.cat([past_value, v], dim=-2) |
|
k_cache = k |
|
v_cache = v |
|
|
|
if exists(rotary_pos_emb) and not has_context: |
|
l = rotary_pos_emb.shape[-1] |
|
(ql, qr), (kl, kr), (vl, vr) = map( |
|
lambda t: (t[..., :l], t[..., l:]), (q, k, v) |
|
) |
|
ql, kl, vl = map( |
|
lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl) |
|
) |
|
q, k, v = map( |
|
lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr)) |
|
) |
|
|
|
input_mask = None |
|
if any(map(exists, (mask, context_mask))): |
|
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) |
|
k_mask = q_mask if not exists(context) else context_mask |
|
k_mask = default( |
|
k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool() |
|
) |
|
q_mask = rearrange(q_mask, "b i -> b () i ()") |
|
k_mask = rearrange(k_mask, "b j -> b () () j") |
|
input_mask = q_mask * k_mask |
|
|
|
if self.num_mem_kv > 0: |
|
mem_k, mem_v = map( |
|
lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v) |
|
) |
|
k = torch.cat((mem_k, k), dim=-2) |
|
v = torch.cat((mem_v, v), dim=-2) |
|
if exists(input_mask): |
|
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) |
|
|
|
if collab_heads: |
|
k = k.expand(-1, h, -1, -1) |
|
|
|
if self.qk_norm: |
|
q, k = map(l2norm, (q, k)) |
|
scale = 1 / (self.scale.exp().clamp(min=1e-2)) |
|
|
|
dots = einsum("b h i d, b h j d -> b h i j", q, k) * scale |
|
mask_value = max_neg_value(dots) |
|
|
|
if exists(prev_attn): |
|
dots = dots + prev_attn |
|
|
|
pre_softmax_attn = dots.clone() |
|
|
|
if talking_heads: |
|
dots = einsum( |
|
"b h i j, h k -> b k i j", dots, self.pre_softmax_proj |
|
).contiguous() |
|
|
|
if self.rel_pos_bias: |
|
dots = self.rel_pos(dots) |
|
|
|
if exists(input_mask): |
|
dots.masked_fill_(~input_mask, mask_value) |
|
del input_mask |
|
|
|
if exists(attn_mask): |
|
assert ( |
|
2 <= attn_mask.ndim <= 4 |
|
), "attention mask must have greater than 2 dimensions but less than or equal to 4" |
|
if attn_mask.ndim == 2: |
|
attn_mask = rearrange(attn_mask, "i j -> () () i j") |
|
elif attn_mask.ndim == 3: |
|
attn_mask = rearrange(attn_mask, "h i j -> () h i j") |
|
dots.masked_fill_(~attn_mask, mask_value) |
|
|
|
if exists(self.max_attend_past): |
|
i, j = dots.shape[-2:] |
|
range_q = torch.arange(j - i, j, device=device) |
|
range_k = torch.arange(j, device=device) |
|
dist = rearrange(range_q, "i -> () () i ()") - rearrange( |
|
range_k, "j -> () () () j" |
|
) |
|
mask = dist > self.max_attend_past |
|
dots.masked_fill_(mask, mask_value) |
|
del mask |
|
|
|
if self.causal: |
|
i, j = dots.shape[-2:] |
|
r = torch.arange(i, device=device) |
|
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") |
|
mask = F.pad(mask, (j - i, 0), value=False) |
|
dots.masked_fill_(mask, mask_value) |
|
del mask |
|
|
|
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: |
|
top, _ = dots.topk(self.sparse_topk, dim=-1) |
|
vk = top[..., -1].unsqueeze(-1).expand_as(dots) |
|
mask = dots < vk |
|
dots.masked_fill_(mask, mask_value) |
|
del mask |
|
|
|
attn = self.attn_fn(dots, dim=-1) |
|
post_softmax_attn = attn.clone() |
|
|
|
attn = self.dropout(attn) |
|
|
|
if talking_heads: |
|
attn = einsum( |
|
"b h i j, h k -> b k i j", attn, self.post_softmax_proj |
|
).contiguous() |
|
|
|
out = einsum("b h i j, b h j d -> b h i d", attn, v) |
|
|
|
if head_scale: |
|
out = out * self.head_scale_params |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
|
|
if exists(self.to_v_gate): |
|
gates = self.to_v_gate(x) |
|
out = out * gates.sigmoid() |
|
|
|
intermediates = Intermediates( |
|
pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn |
|
) |
|
|
|
return self.to_out(out), intermediates, k_cache, v_cache |
|
|
|
|
|
class AttentionLayers(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
depth, |
|
heads=8, |
|
causal=False, |
|
cross_attend=False, |
|
only_cross=False, |
|
use_scalenorm=False, |
|
use_rms_scaleshift_norm=False, |
|
use_rmsnorm=False, |
|
use_rezero=False, |
|
alibi_pos_bias=False, |
|
alibi_num_heads=None, |
|
alibi_learned=False, |
|
position_infused_attn=False, |
|
rotary_pos_emb=False, |
|
rotary_emb_dim=None, |
|
custom_layers=None, |
|
sandwich_coef=None, |
|
par_ratio=None, |
|
residual_attn=False, |
|
cross_residual_attn=False, |
|
macaron=False, |
|
pre_norm=True, |
|
gate_residual=False, |
|
scale_residual=False, |
|
shift_tokens=0, |
|
sandwich_norm=False, |
|
use_qk_norm_attn=False, |
|
qk_norm_attn_seq_len=None, |
|
zero_init_branch_output=False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) |
|
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) |
|
|
|
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) |
|
|
|
self.dim = dim |
|
self.depth = depth |
|
self.layers = nn.ModuleList([]) |
|
self.causal = causal |
|
|
|
rel_pos_bias = "rel_pos_bias" in attn_kwargs |
|
self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb |
|
self.pia_pos_emb = ( |
|
FixedPositionalEmbedding(dim) if position_infused_attn else None |
|
) |
|
|
|
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) |
|
self.rotary_pos_emb = ( |
|
RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None |
|
) |
|
|
|
assert not ( |
|
alibi_pos_bias and rel_pos_bias |
|
), "you can only choose Alibi positional bias or T5 relative positional bias, not both" |
|
|
|
if alibi_pos_bias: |
|
alibi_num_heads = default(alibi_num_heads, heads) |
|
assert ( |
|
alibi_num_heads <= heads |
|
), "number of ALiBi heads must be less than the total number of heads" |
|
alibi_pos_klass = ( |
|
LearnedAlibiPositionalBias |
|
if alibi_learned or not causal |
|
else AlibiPositionalBias |
|
) |
|
self.rel_pos = alibi_pos_klass( |
|
heads=alibi_num_heads, bidirectional=not causal |
|
) |
|
else: |
|
self.rel_pos = None |
|
|
|
assert not ( |
|
not pre_norm and sandwich_norm |
|
), "sandwich norm cannot be used when not using prenorm" |
|
self.pre_norm = pre_norm |
|
self.sandwich_norm = sandwich_norm |
|
|
|
self.residual_attn = residual_attn |
|
self.cross_residual_attn = cross_residual_attn |
|
self.cross_attend = cross_attend |
|
|
|
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm |
|
norm_class = RMSNorm if use_rmsnorm else norm_class |
|
norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class |
|
norm_fn = partial(norm_class, dim) |
|
|
|
norm_fn = nn.Identity if use_rezero else norm_fn |
|
branch_fn = Rezero if use_rezero else None |
|
|
|
if cross_attend and not only_cross: |
|
default_block = ("a", "c", "f") |
|
elif cross_attend and only_cross: |
|
default_block = ("c", "f") |
|
else: |
|
default_block = ("a", "f") |
|
|
|
if macaron: |
|
default_block = ("f",) + default_block |
|
|
|
|
|
|
|
if use_qk_norm_attn: |
|
attn_scale_init_value = ( |
|
-math.log(math.log2(qk_norm_attn_seq_len**2 - qk_norm_attn_seq_len)) |
|
if exists(qk_norm_attn_seq_len) |
|
else None |
|
) |
|
attn_kwargs = { |
|
**attn_kwargs, |
|
"qk_norm": True, |
|
"scale_init_value": attn_scale_init_value, |
|
} |
|
|
|
|
|
|
|
if zero_init_branch_output: |
|
attn_kwargs = {**attn_kwargs, "zero_init_output": True} |
|
ff_kwargs = {**ff_kwargs, "zero_init_output": True} |
|
|
|
|
|
|
|
if exists(custom_layers): |
|
layer_types = custom_layers |
|
elif exists(par_ratio): |
|
par_depth = depth * len(default_block) |
|
assert 1 < par_ratio <= par_depth, "par ratio out of range" |
|
default_block = tuple(filter(not_equals("f"), default_block)) |
|
par_attn = par_depth // par_ratio |
|
depth_cut = ( |
|
par_depth * 2 // 3 |
|
) |
|
par_width = (depth_cut + depth_cut // par_attn) // par_attn |
|
assert ( |
|
len(default_block) <= par_width |
|
), "default block is too large for par_ratio" |
|
par_block = default_block + ("f",) * (par_width - len(default_block)) |
|
par_head = par_block * par_attn |
|
layer_types = par_head + ("f",) * (par_depth - len(par_head)) |
|
elif exists(sandwich_coef): |
|
assert ( |
|
sandwich_coef > 0 and sandwich_coef <= depth |
|
), "sandwich coefficient should be less than the depth" |
|
layer_types = ( |
|
("a",) * sandwich_coef |
|
+ default_block * (depth - sandwich_coef) |
|
+ ("f",) * sandwich_coef |
|
) |
|
else: |
|
layer_types = default_block * depth |
|
|
|
self.layer_types = layer_types |
|
self.num_attn_layers = len(list(filter(equals("a"), layer_types))) |
|
|
|
|
|
|
|
shift_tokens = cast_tuple(shift_tokens, len(layer_types)) |
|
|
|
|
|
|
|
for ind, (layer_type, layer_shift_tokens) in enumerate( |
|
zip(self.layer_types, shift_tokens) |
|
): |
|
is_last_layer = ind == (len(self.layer_types) - 1) |
|
|
|
if layer_type == "a": |
|
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) |
|
elif layer_type == "c": |
|
layer = Attention(dim, heads=heads, **attn_kwargs) |
|
elif layer_type == "f": |
|
layer = FeedForward(dim, **ff_kwargs) |
|
layer = layer if not macaron else Scale(0.5, layer) |
|
else: |
|
raise Exception(f"invalid layer type {layer_type}") |
|
|
|
if layer_shift_tokens > 0: |
|
shift_range_upper = layer_shift_tokens + 1 |
|
shift_range_lower = -layer_shift_tokens if not causal else 0 |
|
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) |
|
|
|
if exists(branch_fn): |
|
layer = branch_fn(layer) |
|
|
|
residual_fn = GRUGating if gate_residual else Residual |
|
residual = residual_fn(dim, scale_residual=scale_residual) |
|
|
|
layer_uses_qk_norm = use_qk_norm_attn and layer_type in ("a", "c") |
|
|
|
pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None |
|
post_branch_norm = ( |
|
norm_fn() if sandwich_norm or layer_uses_qk_norm else None |
|
) |
|
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None |
|
|
|
norms = nn.ModuleList([pre_branch_norm, post_branch_norm, post_main_norm]) |
|
|
|
self.layers.append(nn.ModuleList([norms, layer, residual])) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
full_context=None, |
|
mask=None, |
|
context_mask=None, |
|
attn_mask=None, |
|
mems=None, |
|
return_hiddens=False, |
|
norm_scale_shift_inp=None, |
|
past_key_values=None, |
|
expected_seq_len=None, |
|
): |
|
|
|
assert not ( |
|
self.cross_attend ^ (exists(context) or exists(full_context)) |
|
), "context must be passed in if cross_attend is set to True" |
|
assert ( |
|
context is None or full_context is None |
|
), "only one of full_context or context can be provided" |
|
|
|
hiddens = [] |
|
intermediates = [] |
|
prev_attn = None |
|
prev_cross_attn = None |
|
|
|
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers |
|
norm_args = {} |
|
if exists(norm_scale_shift_inp): |
|
norm_args["norm_scale_shift_inp"] = norm_scale_shift_inp |
|
|
|
rotary_pos_emb = None |
|
if exists(self.rotary_pos_emb): |
|
if not self.training and self.causal: |
|
assert ( |
|
expected_seq_len is not None |
|
), "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`" |
|
elif expected_seq_len is None: |
|
expected_seq_len = 0 |
|
seq_len = x.shape[1] |
|
if past_key_values is not None: |
|
seq_len += past_key_values[0][0].shape[-2] |
|
max_rotary_emb_length = max( |
|
list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) |
|
+ [expected_seq_len] |
|
) |
|
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) |
|
|
|
present_key_values = [] |
|
cross_attn_count = 0 |
|
for ind, (layer_type, (norm, block, residual_fn)) in enumerate( |
|
zip(self.layer_types, self.layers) |
|
): |
|
if layer_type == "a": |
|
layer_mem = mems.pop(0) if mems else None |
|
|
|
residual = x |
|
|
|
pre_branch_norm, post_branch_norm, post_main_norm = norm |
|
|
|
if exists(pre_branch_norm): |
|
x = pre_branch_norm(x, **norm_args) |
|
|
|
if layer_type == "a" or layer_type == "c": |
|
if past_key_values is not None: |
|
layer_kv = past_key_values.pop(0) |
|
layer_past = tuple(s.to(x.device) for s in layer_kv) |
|
else: |
|
layer_past = None |
|
|
|
if layer_type == "a": |
|
out, inter, k, v = block( |
|
x, |
|
None, |
|
mask, |
|
None, |
|
attn_mask, |
|
self.pia_pos_emb, |
|
rotary_pos_emb, |
|
prev_attn, |
|
layer_mem, |
|
layer_past, |
|
) |
|
elif layer_type == "c": |
|
if exists(full_context): |
|
out, inter, k, v = block( |
|
x, |
|
full_context[cross_attn_count], |
|
mask, |
|
context_mask, |
|
None, |
|
None, |
|
None, |
|
prev_attn, |
|
None, |
|
layer_past, |
|
) |
|
else: |
|
out, inter, k, v = block( |
|
x, |
|
context, |
|
mask, |
|
context_mask, |
|
None, |
|
None, |
|
None, |
|
prev_attn, |
|
None, |
|
layer_past, |
|
) |
|
elif layer_type == "f": |
|
out = block(x) |
|
|
|
if ( |
|
layer_type == "a" |
|
or layer_type == "c" |
|
and present_key_values is not None |
|
): |
|
present_key_values.append((k.detach(), v.detach())) |
|
|
|
if exists(post_branch_norm): |
|
out = post_branch_norm(out, **norm_args) |
|
|
|
x = residual_fn(out, residual) |
|
|
|
if layer_type in ("a", "c"): |
|
intermediates.append(inter) |
|
|
|
if layer_type == "a" and self.residual_attn: |
|
prev_attn = inter.pre_softmax_attn |
|
elif layer_type == "c" and self.cross_residual_attn: |
|
prev_cross_attn = inter.pre_softmax_attn |
|
|
|
if exists(post_main_norm): |
|
x = post_main_norm(x, **norm_args) |
|
|
|
if layer_type == "c": |
|
cross_attn_count += 1 |
|
|
|
if layer_type == "f": |
|
hiddens.append(x) |
|
|
|
if return_hiddens: |
|
intermediates = LayerIntermediates( |
|
hiddens=hiddens, |
|
attn_intermediates=intermediates, |
|
past_key_values=present_key_values, |
|
) |
|
|
|
return x, intermediates |
|
|
|
return x |
|
|
|
|
|
class Encoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert "causal" not in kwargs, "cannot set causality on encoder" |
|
super().__init__(causal=False, **kwargs) |
|
|
|
|
|
class Decoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert "causal" not in kwargs, "cannot set causality on decoder" |
|
super().__init__(causal=True, **kwargs) |
|
|
|
|
|
class CrossAttender(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
super().__init__(cross_attend=True, only_cross=True, **kwargs) |
|
|
|
|
|
class ViTransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
image_size, |
|
patch_size, |
|
attn_layers, |
|
num_classes=None, |
|
dropout=0.0, |
|
emb_dropout=0.0, |
|
): |
|
super().__init__() |
|
assert isinstance(attn_layers, Encoder), "attention layers must be an Encoder" |
|
assert ( |
|
image_size % patch_size == 0 |
|
), "image dimensions must be divisible by the patch size" |
|
dim = attn_layers.dim |
|
num_patches = (image_size // patch_size) ** 2 |
|
patch_dim = 3 * patch_size**2 |
|
|
|
self.patch_size = patch_size |
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) |
|
self.patch_to_embedding = nn.Linear(patch_dim, dim) |
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) |
|
self.dropout = nn.Dropout(emb_dropout) |
|
|
|
self.attn_layers = attn_layers |
|
self.norm = nn.LayerNorm(dim) |
|
self.mlp_head = ( |
|
FeedForward(dim, dim_out=num_classes, dropout=dropout) |
|
if exists(num_classes) |
|
else None |
|
) |
|
|
|
def forward(self, img, return_embeddings=False): |
|
p = self.patch_size |
|
|
|
x = rearrange(img, "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=p, p2=p) |
|
x = self.patch_to_embedding(x) |
|
b, n, _ = x.shape |
|
|
|
cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = x + self.pos_embedding[:, : (n + 1)] |
|
x = self.dropout(x) |
|
|
|
x = self.attn_layers(x) |
|
x = self.norm(x) |
|
|
|
if not exists(self.mlp_head) or return_embeddings: |
|
return x |
|
|
|
return self.mlp_head(x[:, 0]) |
|
|
|
|
|
class TransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
num_tokens, |
|
max_seq_len, |
|
attn_layers, |
|
emb_dim=None, |
|
max_mem_len=0.0, |
|
shift_mem_down=0, |
|
emb_dropout=0.0, |
|
num_memory_tokens=None, |
|
tie_embedding=False, |
|
use_pos_emb=True, |
|
): |
|
super().__init__() |
|
assert isinstance( |
|
attn_layers, AttentionLayers |
|
), "attention layers must be one of Encoder or Decoder" |
|
|
|
dim = attn_layers.dim |
|
emb_dim = default(emb_dim, dim) |
|
|
|
self.max_seq_len = max_seq_len |
|
self.max_mem_len = max_mem_len |
|
self.shift_mem_down = shift_mem_down |
|
|
|
self.token_emb = nn.Embedding(num_tokens, emb_dim) |
|
self.pos_emb = ( |
|
AbsolutePositionalEmbedding(emb_dim, max_seq_len) |
|
if (use_pos_emb and not attn_layers.has_pos_emb) |
|
else always(0) |
|
) |
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() |
|
self.attn_layers = attn_layers |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.init_() |
|
|
|
self.to_logits = ( |
|
nn.Linear(dim, num_tokens) |
|
if not tie_embedding |
|
else lambda t: t @ self.token_emb.weight.t() |
|
) |
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0) |
|
self.num_memory_tokens = num_memory_tokens |
|
if num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) |
|
|
|
def init_(self): |
|
nn.init.kaiming_normal_(self.token_emb.weight) |
|
|
|
def forward( |
|
self, |
|
x, |
|
return_embeddings=False, |
|
mask=None, |
|
return_hiddens=False, |
|
return_attn=False, |
|
mems=None, |
|
use_cache=False, |
|
**kwargs, |
|
): |
|
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens |
|
x = self.token_emb(x) |
|
x = x + self.pos_emb(x) |
|
x = self.emb_dropout(x) |
|
|
|
x = self.project_emb(x) |
|
|
|
if num_mem > 0: |
|
mem = repeat(self.memory_tokens, "n d -> b n d", b=b) |
|
x = torch.cat((mem, x), dim=1) |
|
|
|
|
|
if exists(mask): |
|
mask = F.pad(mask, (num_mem, 0), value=True) |
|
|
|
if self.shift_mem_down and exists(mems): |
|
mems_l, mems_r = mems[: self.shift_mem_down], mems[self.shift_mem_down :] |
|
mems = [*mems_r, *mems_l] |
|
|
|
x, intermediates = self.attn_layers( |
|
x, mask=mask, mems=mems, return_hiddens=True, **kwargs |
|
) |
|
x = self.norm(x) |
|
|
|
mem, x = x[:, :num_mem], x[:, num_mem:] |
|
|
|
out = self.to_logits(x) if not return_embeddings else x |
|
|
|
if return_hiddens: |
|
hiddens = intermediates.hiddens |
|
return out, hiddens |
|
|
|
res = [out] |
|
if return_attn: |
|
attn_maps = list( |
|
map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates) |
|
) |
|
res.append(attn_maps) |
|
if use_cache: |
|
res.append(intermediates.past_key_values) |
|
|
|
if len(res) > 1: |
|
return tuple(res) |
|
return res[0] |
|
|
|
|
|
class ContinuousTransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
max_seq_len, |
|
attn_layers, |
|
dim_in=None, |
|
dim_out=None, |
|
emb_dim=None, |
|
emb_dropout=0.0, |
|
use_pos_emb=True, |
|
): |
|
super().__init__() |
|
assert isinstance( |
|
attn_layers, AttentionLayers |
|
), "attention layers must be one of Encoder or Decoder" |
|
|
|
dim = attn_layers.dim |
|
|
|
self.max_seq_len = max_seq_len |
|
|
|
self.pos_emb = ( |
|
AbsolutePositionalEmbedding(dim, max_seq_len) |
|
if (use_pos_emb and not attn_layers.has_pos_emb) |
|
else always(0) |
|
) |
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() |
|
|
|
self.attn_layers = attn_layers |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
x, |
|
return_embeddings=False, |
|
mask=None, |
|
return_attn=False, |
|
mems=None, |
|
use_cache=False, |
|
**kwargs, |
|
): |
|
b, n, _, device = *x.shape, x.device |
|
|
|
x = self.project_in(x) |
|
x = x + self.pos_emb(x) |
|
x = self.emb_dropout(x) |
|
|
|
x, intermediates = self.attn_layers( |
|
x, mask=mask, mems=mems, return_hiddens=True, **kwargs |
|
) |
|
x = self.norm(x) |
|
|
|
out = self.project_out(x) if not return_embeddings else x |
|
|
|
res = [out] |
|
if return_attn: |
|
attn_maps = list( |
|
map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates) |
|
) |
|
res.append(attn_maps) |
|
if use_cache: |
|
res.append(intermediates.past_key_values) |
|
|
|
if len(res) > 1: |
|
return tuple(res) |
|
return res[0] |
|
|