pallavJha commited on
Commit
c390f03
·
1 Parent(s): 65e2bed

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -47
README.md CHANGED
@@ -15,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.5846
19
 
20
  ## Model description
21
 
@@ -46,52 +46,52 @@ The following hyperparameters were used during training:
46
 
47
  | Training Loss | Epoch | Step | Validation Loss |
48
  |:-------------:|:-----:|:-----:|:---------------:|
49
- | No log | 0.54 | 1000 | 2.5308 |
50
- | 2.824 | 1.08 | 2000 | 2.0484 |
51
- | 2.824 | 1.62 | 3000 | 1.7408 |
52
- | 1.8911 | 2.16 | 4000 | 1.5862 |
53
- | 1.8911 | 2.7 | 5000 | 1.4858 |
54
- | 1.594 | 3.24 | 6000 | 1.3551 |
55
- | 1.594 | 3.78 | 7000 | 1.2802 |
56
- | 1.4147 | 4.32 | 8000 | 1.2439 |
57
- | 1.4147 | 4.86 | 9000 | 1.1548 |
58
- | 1.2978 | 5.4 | 10000 | 1.1031 |
59
- | 1.2978 | 5.94 | 11000 | 1.0674 |
60
- | 1.1984 | 6.48 | 12000 | 1.0380 |
61
- | 1.1086 | 7.02 | 13000 | 0.9949 |
62
- | 1.1086 | 7.56 | 14000 | 0.9393 |
63
- | 1.0383 | 8.1 | 15000 | 0.9204 |
64
- | 1.0383 | 8.64 | 16000 | 0.8921 |
65
- | 0.9817 | 9.18 | 17000 | 0.8670 |
66
- | 0.9817 | 9.72 | 18000 | 0.8250 |
67
- | 0.9277 | 10.26 | 19000 | 0.8084 |
68
- | 0.9277 | 10.8 | 20000 | 0.7968 |
69
- | 0.8864 | 11.34 | 21000 | 0.7928 |
70
- | 0.8864 | 11.88 | 22000 | 0.7605 |
71
- | 0.8525 | 12.42 | 23000 | 0.7602 |
72
- | 0.8525 | 12.96 | 24000 | 0.7406 |
73
- | 0.8197 | 13.5 | 25000 | 0.7224 |
74
- | 0.7975 | 14.04 | 26000 | 0.7060 |
75
- | 0.7975 | 14.58 | 27000 | 0.6893 |
76
- | 0.7733 | 15.12 | 28000 | 0.6940 |
77
- | 0.7733 | 15.66 | 29000 | 0.6836 |
78
- | 0.7534 | 16.2 | 30000 | 0.6620 |
79
- | 0.7534 | 16.74 | 31000 | 0.6584 |
80
- | 0.7376 | 17.28 | 32000 | 0.6552 |
81
- | 0.7376 | 17.82 | 33000 | 0.6487 |
82
- | 0.7242 | 18.36 | 34000 | 0.6334 |
83
- | 0.7242 | 18.9 | 35000 | 0.6319 |
84
- | 0.7052 | 19.44 | 36000 | 0.6223 |
85
- | 0.7052 | 19.98 | 37000 | 0.6155 |
86
- | 0.6935 | 20.52 | 38000 | 0.6092 |
87
- | 0.6816 | 21.06 | 39000 | 0.6079 |
88
- | 0.6816 | 21.6 | 40000 | 0.6045 |
89
- | 0.6747 | 22.14 | 41000 | 0.5997 |
90
- | 0.6747 | 22.68 | 42000 | 0.6002 |
91
- | 0.6693 | 23.22 | 43000 | 0.5924 |
92
- | 0.6693 | 23.76 | 44000 | 0.5922 |
93
- | 0.6608 | 24.3 | 45000 | 0.5861 |
94
- | 0.6608 | 24.84 | 46000 | 0.5846 |
95
 
96
 
97
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.3494
19
 
20
  ## Model description
21
 
 
46
 
47
  | Training Loss | Epoch | Step | Validation Loss |
48
  |:-------------:|:-----:|:-----:|:---------------:|
49
+ | No log | 0.54 | 1000 | 0.4810 |
50
+ | 0.5325 | 1.08 | 2000 | 0.4812 |
51
+ | 0.5325 | 1.62 | 3000 | 0.4739 |
52
+ | 0.5322 | 2.16 | 4000 | 0.4759 |
53
+ | 0.5322 | 2.7 | 5000 | 0.4818 |
54
+ | 0.5259 | 3.24 | 6000 | 0.4522 |
55
+ | 0.5259 | 3.78 | 7000 | 0.4632 |
56
+ | 0.5167 | 4.32 | 8000 | 0.4628 |
57
+ | 0.5167 | 4.86 | 9000 | 0.4345 |
58
+ | 0.5076 | 5.4 | 10000 | 0.4563 |
59
+ | 0.5076 | 5.94 | 11000 | 0.4326 |
60
+ | 0.494 | 6.48 | 12000 | 0.4424 |
61
+ | 0.4906 | 7.02 | 13000 | 0.4272 |
62
+ | 0.4906 | 7.56 | 14000 | 0.4164 |
63
+ | 0.4801 | 8.1 | 15000 | 0.4213 |
64
+ | 0.4801 | 8.64 | 16000 | 0.4320 |
65
+ | 0.4699 | 9.18 | 17000 | 0.4100 |
66
+ | 0.4699 | 9.72 | 18000 | 0.4127 |
67
+ | 0.4613 | 10.26 | 19000 | 0.4035 |
68
+ | 0.4613 | 10.8 | 20000 | 0.4039 |
69
+ | 0.4556 | 11.34 | 21000 | 0.4149 |
70
+ | 0.4556 | 11.88 | 22000 | 0.4092 |
71
+ | 0.4475 | 12.42 | 23000 | 0.3965 |
72
+ | 0.4475 | 12.96 | 24000 | 0.3973 |
73
+ | 0.4389 | 13.5 | 25000 | 0.4013 |
74
+ | 0.4349 | 14.04 | 26000 | 0.3797 |
75
+ | 0.4349 | 14.58 | 27000 | 0.3728 |
76
+ | 0.4288 | 15.12 | 28000 | 0.3834 |
77
+ | 0.4288 | 15.66 | 29000 | 0.3885 |
78
+ | 0.4222 | 16.2 | 30000 | 0.3820 |
79
+ | 0.4222 | 16.74 | 31000 | 0.3755 |
80
+ | 0.4152 | 17.28 | 32000 | 0.3693 |
81
+ | 0.4152 | 17.82 | 33000 | 0.3679 |
82
+ | 0.4122 | 18.36 | 34000 | 0.3605 |
83
+ | 0.4122 | 18.9 | 35000 | 0.3625 |
84
+ | 0.4077 | 19.44 | 36000 | 0.3631 |
85
+ | 0.4077 | 19.98 | 37000 | 0.3607 |
86
+ | 0.4 | 20.52 | 38000 | 0.3615 |
87
+ | 0.3972 | 21.06 | 39000 | 0.3561 |
88
+ | 0.3972 | 21.6 | 40000 | 0.3594 |
89
+ | 0.3953 | 22.14 | 41000 | 0.3554 |
90
+ | 0.3953 | 22.68 | 42000 | 0.3515 |
91
+ | 0.3903 | 23.22 | 43000 | 0.3539 |
92
+ | 0.3903 | 23.76 | 44000 | 0.3500 |
93
+ | 0.3878 | 24.3 | 45000 | 0.3489 |
94
+ | 0.3878 | 24.84 | 46000 | 0.3494 |
95
 
96
 
97
  ### Framework versions