File size: 1,971 Bytes
ad2fd34
7c372d2
5df075b
 
c69c8f9
3df32f3
c69c8f9
 
 
 
 
fe7ba36
c69c8f9
 
 
3e359ce
d7a5687
5ac00d7
d7a5687
 
 
 
275d684
 
 
d912cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a5687
d5f2846
d7a5687
275d684
d7a5687
 
 
 
 
 
fe66957
d7a5687
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: openrail
model_creator: axiong
model_name: PMC_LLaMA_13B
---
# PMC_LLaMA_13B - AWQ
- Model creator: [axiong](https://huggingface.co/axiong)
- Original model: [PMC_LLaMA_13B](https://huggingface.co/axiong/PMC_LLaMA_13B)

## Description

This repository contains AWQ model files for [PMC_LLaMA_13B](https://huggingface.co/axiong/PMC_LLaMA_13B).

### About AWQ

[Activation-aware Weight Quantization (AWQ)](https://arxiv.org/abs/2306.00978) selectively preserves a subset of crucial weights for LLM performance instead of quantizing all weights in a model. This targeted approach minimizes quantization loss, allowing models to operate in 4-bit precision without compromising performance.

Example of usage with vLLM library:

```python
from vllm import LLM, SamplingParams

prompt_input = (
    '### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:'
)
 
examples = [
    {
      "instruction": "You're a doctor, kindly address the medical queries according to the patient's account. Answer the question.",
      "input": "What is the mechanism of action of antibiotics?"
    },
    {
      "instruction": "You're a doctor, kindly address the medical queries according to the patient's account. Answer the question.",
      "input": "How do statins work to lower cholesterol levels?"
    },
    {
      "instruction": "You're a doctor, kindly address the medical queries according to the patient's account. Answer the question.",
      "input": "Tell me about Paracetamol"
    }
]
 
prompt_batch = [prompt_input.format_map(example) for example in examples]

sampling_params = SamplingParams(temperature=0.8, max_tokens=512)

llm = LLM(model="disi-unibo-nlp/pmc-llama-13b-awq", quantization="awq", dtype="half")

outputs = llm.generate(prompt_batch, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt}")
    print(generated_text)
```