ppo-LunarLander-v3 / config.json
dineshresearch's picture
Upload PPO LunarLander-v2 trained agent
bc48815
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f50878ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f50878f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f5087e040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f5087e0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7f5087e160>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f5087e1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7f5087e280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f5087e310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f5087e3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f5087e430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f5087e4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f5087e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f508768a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678108040493510441, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0OlT09om+78i4HvHXj7DzkibC8CcTGPQAAgD8AAIA/zUVLvZxnMbxdKfc9JsoqvuVCjr2GRmW/AACAPwAAgD86FCq+Cgh6P5IBaD4HAem+ngA8vlrtBD4AAAAAAAAAAE14QL2ugae6PXCxveAverYePp+63e3dNQAAAAAAAAAAehQSPlzLE7wgNLI9smAsvDPIbb1u1A+9AACAPwAAgD/mcP69ybQMP/USNT4mn8i+IQXTvFib0D0AAAAAAAAAADMjfjuxKt89gTUoPhYD2L7QFW4+vPksvQAAAAAAAAAAZro8vOz0njwqIEc98LKlvrXqGz5az7I8AAAAAAAAAAAAImM8AVKxP97saT4CT4O+9fMKvCaAQ7wAAAAAAAAAADNhebxk5QM/SZ8QPtcp376tyiY9PlhFPQAAAAAAAAAArZxFvozBhj8Z1oS+PZSuvl3Lvr5WIsC9AAAAAAAAAAAA0K66UrD8udJWaLgkJGezk9U/unIkiDcAAIA/AACAPxYNU76/EUk/rsiEvbIdvb7KC+K+hrDgPAAAAAAAAAAAZpEavZtqIz981Cg+cfn0vkW/Mz36dAQ+AAAAAAAAAAAm1Bw+vsl8Pztigz77TSO/yqMUPkqJiD0AAAAAAAAAAM3HijzStuu7XjVLvOEYRDxJlzS9c14oPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaAQb178CckCUhpRSlIwBbJRL7YwBdJRHQLvANkcjqwB1fZQoaAZoCWgPQwiPNLitrfdvQJSGlFKUaBVLx2gWR0C7wDfkJa7mdX2UKGgGaAloD0MI6WUUyy1vSkCUhpRSlGgVS8doFkdAu8Cj2g398HV9lChoBmgJaA9DCDojSnuD921AlIaUUpRoFUvaaBZHQLvAr4pc5bR1fZQoaAZoCWgPQwhYjLrWHvVyQJSGlFKUaBVNDgFoFkdAu8CyQkona3V9lChoBmgJaA9DCLotkQsOPHNAlIaUUpRoFUvYaBZHQLvAw89Oh011fZQoaAZoCWgPQwgL7DGRUtlyQJSGlFKUaBVLxWgWR0C7wMnsTnJUdX2UKGgGaAloD0MIPs+fNuo7c0CUhpRSlGgVTSkBaBZHQLvA1GipNsZ1fZQoaAZoCWgPQwjtuyL4H0FyQJSGlFKUaBVLy2gWR0C7wNcO09hadX2UKGgGaAloD0MImlyMgTX8ckCUhpRSlGgVTSEBaBZHQLvA3ml67d11fZQoaAZoCWgPQwhIqBlSRXlxQJSGlFKUaBVL2mgWR0C7wR5DmbLEdX2UKGgGaAloD0MIvOoB85DzcECUhpRSlGgVS81oFkdAu8EqxFAmiXV9lChoBmgJaA9DCB+F61E43W1AlIaUUpRoFU0AAWgWR0C7wWLhrFfidX2UKGgGaAloD0MIaTaPwyCockCUhpRSlGgVS9ZoFkdAu8FnRE4NqnV9lChoBmgJaA9DCGH6XkOw7XBAlIaUUpRoFUvZaBZHQLvBcXT3IuJ1fZQoaAZoCWgPQwhwYd14Nz9zQJSGlFKUaBVNFAFoFkdAu8GJFhG6PXV9lChoBmgJaA9DCM0FLo816HJAlIaUUpRoFUvlaBZHQLvBiiWVu791fZQoaAZoCWgPQwjuztpt10lwQJSGlFKUaBVL5mgWR0C7wY0VWS2ZdX2UKGgGaAloD0MIahX9odlacECUhpRSlGgVS8loFkdAu8HKeOGTLXV9lChoBmgJaA9DCHl4z4GlvnFAlIaUUpRoFUvGaBZHQLvB0NutOmB1fZQoaAZoCWgPQwiOjxZnTH1yQJSGlFKUaBVL3mgWR0C7wfUnogV5dX2UKGgGaAloD0MIaJWZ0jpIckCUhpRSlGgVS85oFkdAu8IIJ6Y3N3V9lChoBmgJaA9DCJ/leXD3mnNAlIaUUpRoFUvfaBZHQLvCDQAMlTp1fZQoaAZoCWgPQwhpN/qYD2tvQJSGlFKUaBVL2GgWR0C7wg7KifxudX2UKGgGaAloD0MIMh06PW83c0CUhpRSlGgVTQEBaBZHQLvCN2nKnvV1fZQoaAZoCWgPQwgVAySaQNxyQJSGlFKUaBVL2GgWR0C7wlbpJPIodX2UKGgGaAloD0MI0uKMYY42cECUhpRSlGgVTQ4BaBZHQLvCWb0voNd1fZQoaAZoCWgPQwiNs+kIoCZzQJSGlFKUaBVL72gWR0C7woQMUh3adX2UKGgGaAloD0MINqypLIr1bkCUhpRSlGgVS8xoFkdAu8KTjjrAxnV9lChoBmgJaA9DCNwNorUiC3NAlIaUUpRoFUvSaBZHQLvCkxFRYRx1fZQoaAZoCWgPQwjiV6zh4q5wQJSGlFKUaBVL0GgWR0C7wrB6a9bpdX2UKGgGaAloD0MIclEtIoppcUCUhpRSlGgVS9BoFkdAu8K0nE2pAHV9lChoBmgJaA9DCMR8eQG2wHFAlIaUUpRoFUvVaBZHQLvCuP2wmmd1fZQoaAZoCWgPQwgiNlg4SQ5xQJSGlFKUaBVL+2gWR0C7wsndKujidX2UKGgGaAloD0MIF7oSgaqBc0CUhpRSlGgVS81oFkdAu8fA3yZrpXV9lChoBmgJaA9DCOP6d31munFAlIaUUpRoFUvXaBZHQLvH1MEidJ91fZQoaAZoCWgPQwgJih9jrhJzQJSGlFKUaBVLwmgWR0C7x/HqVyFPdX2UKGgGaAloD0MIMC3qkxxmckCUhpRSlGgVS9VoFkdAu8gUlRgqmXV9lChoBmgJaA9DCIOnkCt1OnBAlIaUUpRoFUvpaBZHQLvITvPTodN1fZQoaAZoCWgPQwjpEDgSaLFvQJSGlFKUaBVLzGgWR0C7yE8q8UVSdX2UKGgGaAloD0MI2/tUFRqJU0CUhpRSlGgVS5ZoFkdAu8hkB0ZFX3V9lChoBmgJaA9DCGDJVSx+qzVAlIaUUpRoFUusaBZHQLvIfQWepXJ1fZQoaAZoCWgPQwj7ITZYeN5xQJSGlFKUaBVL1WgWR0C7yJPx6OYIdX2UKGgGaAloD0MIZjBGJEpoc0CUhpRSlGgVS9xoFkdAu8ieEsasIXV9lChoBmgJaA9DCHwL68a70HBAlIaUUpRoFU1AAWgWR0C7yN7JKaoddX2UKGgGaAloD0MIUmABTNnxc0CUhpRSlGgVS9doFkdAu8jprl/6PHV9lChoBmgJaA9DCMIXJlOF7XFAlIaUUpRoFUvPaBZHQLvJDn2Iwdt1fZQoaAZoCWgPQwhubkxPmJ1xQJSGlFKUaBVL3mgWR0C7yUwx33YddX2UKGgGaAloD0MIBkfJqzOJcUCUhpRSlGgVS/FoFkdAu8lVGhEjPnV9lChoBmgJaA9DCIuKOJ3kWXJAlIaUUpRoFUvtaBZHQLvJrojfNzN1fZQoaAZoCWgPQwg5fNKJBMFxQJSGlFKUaBVL4mgWR0C7ybZRO1v3dX2UKGgGaAloD0MIVryReSTXcUCUhpRSlGgVS8poFkdAu8nV6mfoR3V9lChoBmgJaA9DCNHmOLeJk3JAlIaUUpRoFUu/aBZHQLvJ+MCLdep1fZQoaAZoCWgPQwjMCG8PAoFwQJSGlFKUaBVL0GgWR0C7ykJYs/Y8dX2UKGgGaAloD0MII0xRLk2ocUCUhpRSlGgVS/JoFkdAu8qP2Cdz4nV9lChoBmgJaA9DCC9RvTWw421AlIaUUpRoFUviaBZHQLvKnYbbUPR1fZQoaAZoCWgPQwj5823B0t5uQJSGlFKUaBVL1GgWR0C7yqM+u/1ydX2UKGgGaAloD0MIC7Q7pBjUcUCUhpRSlGgVTXcBaBZHQLvKr8IAwPB1fZQoaAZoCWgPQwg0FHe8yY1xQJSGlFKUaBVLymgWR0C7ytbdadMCdX2UKGgGaAloD0MIqIx/n3HfcECUhpRSlGgVS85oFkdAu8rr/1g6VHV9lChoBmgJaA9DCNUEUfcBR3FAlIaUUpRoFU0GAWgWR0C7ywtxVAAydX2UKGgGaAloD0MIuRrZlRYackCUhpRSlGgVS75oFkdAu8vFYwIt2HV9lChoBmgJaA9DCEKwql5+iXFAlIaUUpRoFUv3aBZHQLvLziNsFdN1fZQoaAZoCWgPQwhFuTR+4c5yQJSGlFKUaBVL3mgWR0C7y/CPuG9IdX2UKGgGaAloD0MIzojS3iDdcUCUhpRSlGgVS8JoFkdAu8v1XQtz0nV9lChoBmgJaA9DCCR9WkU/0XFAlIaUUpRoFU2sAWgWR0C7y/qtT1kEdX2UKGgGaAloD0MIBOPg0vGGcECUhpRSlGgVS+toFkdAu8wM20iQk3V9lChoBmgJaA9DCC3saYc/E3JAlIaUUpRoFUvbaBZHQLvMRdHUc4p1fZQoaAZoCWgPQwix22eVWc1xQJSGlFKUaBVL0GgWR0C7zGA1NxlydX2UKGgGaAloD0MI1V3ZBYP3M0CUhpRSlGgVS7VoFkdAu8xj+Haew3V9lChoBmgJaA9DCPQVpBmLvHJAlIaUUpRoFUvUaBZHQLvMbuX/o7p1fZQoaAZoCWgPQwhslzYc1qVyQJSGlFKUaBVL1GgWR0C7zHLIT4+KdX2UKGgGaAloD0MIejnsvuP9ckCUhpRSlGgVS+hoFkdAu8zCF8G9pXV9lChoBmgJaA9DCIFAZ9KmBHJAlIaUUpRoFU0FAWgWR0C7zMbKmsNldX2UKGgGaAloD0MIC9KMRVPJcECUhpRSlGgVS+loFkdAu8zXvZyuIXV9lChoBmgJaA9DCCekNQYdwXFAlIaUUpRoFU2jAWgWR0C7zOgUQCjldX2UKGgGaAloD0MIZr0YyknEcECUhpRSlGgVS9loFkdAu80qKoAGS3V9lChoBmgJaA9DCLxcxHdiYnJAlIaUUpRoFUvXaBZHQLvNQYraufV1fZQoaAZoCWgPQwi1G33Mh91wQJSGlFKUaBVLyGgWR0C7zUOK8+RpdX2UKGgGaAloD0MIO4veqYCfb0CUhpRSlGgVTQgCaBZHQLvNV238XN11fZQoaAZoCWgPQwgKhnMNM/NyQJSGlFKUaBVL/mgWR0C7zWsvVVghdX2UKGgGaAloD0MIUirhCf3YcECUhpRSlGgVTQEBaBZHQLvNij4593N1fZQoaAZoCWgPQwhbJO1G32pxQJSGlFKUaBVL5GgWR0C7zaj4pMHsdX2UKGgGaAloD0MIqUpbXKOicUCUhpRSlGgVS9ZoFkdAu82okX1rZnV9lChoBmgJaA9DCHVyhuKOh3FAlIaUUpRoFUvXaBZHQLvNrY4ACGN1fZQoaAZoCWgPQwgAHlGhurZxQJSGlFKUaBVL2GgWR0C7zbw2ETQFdX2UKGgGaAloD0MI1/hM9g9/c0CUhpRSlGgVTRsBaBZHQLvOHk4FRpF1fZQoaAZoCWgPQwho6J/goidxQJSGlFKUaBVNcAFoFkdAu84xCWu5jHV9lChoBmgJaA9DCKhtwyhIJnBAlIaUUpRoFUvkaBZHQLvONWHUMG51fZQoaAZoCWgPQwg/c9annFJzQJSGlFKUaBVL+2gWR0C7zkJNXYDldX2UKGgGaAloD0MIqdxELQ3YckCUhpRSlGgVS+NoFkdAu85FaEBbOnV9lChoBmgJaA9DCPtalxph8nFAlIaUUpRoFU0GAWgWR0C7zlZFspG4dX2UKGgGaAloD0MIx2Rx/1EXcUCUhpRSlGgVS9loFkdAu86Om78Nx3V9lChoBmgJaA9DCGjKTj/oRXJAlIaUUpRoFUvWaBZHQLvOnjcVQAN1fZQoaAZoCWgPQwjNO07R0YByQJSGlFKUaBVL+2gWR0C7zqvN/vv0dX2UKGgGaAloD0MIhnXj3VEkckCUhpRSlGgVS/NoFkdAu862YMOPNnV9lChoBmgJaA9DCAGIu3qV+HFAlIaUUpRoFUvzaBZHQLvO2j/dZaF1fZQoaAZoCWgPQwiPiv87YnJwQJSGlFKUaBVL2mgWR0C7zvEjs2NvdX2UKGgGaAloD0MIjWMke4SqckCUhpRSlGgVS9toFkdAu874AHVwxXV9lChoBmgJaA9DCP7TDRT4AnBAlIaUUpRoFUv+aBZHQLvPLBSDRMN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}