dim-tsoukalas commited on
Commit
5a43bcf
·
1 Parent(s): 455d9a3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af4f24edfb116e93cc2129002a0360dfd48a61e4dfab60b5e5639f88b2b350f3
3
+ size 108251
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5feeb39a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe5feeae880>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1697969462879586980,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAX7DXvZYN8D7zZHK+svOBPs/svDothNc+Y4GHv2sdvb++dYm/DYZcviTOsr/XRWa/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx9uiPgT/jD6y8Zy+fhaKvvgkFD893wc/EdW9v3Flbr8J+Cu/+k0IPkGasr/Xf4C+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABfsNe9lg3wPvNkcr5y6PC/rSvPP9uNs7+y84E+z+y8Oi2E1z6lpfk+jj6Ku3RJyD5jgYe/ax29v751ib/UIUS/Vnd5v7aAbb4Nhly+JM6yv9dFZr9zbLQ/HQJcvxLnc7qUaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.0531687e-01 4.6885365e-01 -2.3671322e-01]\n [ 2.5381237e-01 1.4413836e-03 4.2093030e-01]\n [-1.0586361e+00 -1.4774603e+00 -1.0739057e+00]\n [-2.1535511e-01 -1.3969159e+00 -8.9950317e-01]]",
34
+ "desired_goal": "[[ 0.31808302 0.2753831 -0.3065315 ]\n [-0.26970285 0.5786891 0.5307501 ]\n [-1.4830648 -0.9312354 -0.67175347]\n [ 0.13310996 -1.3953325 -0.25097534]]",
35
+ "observation": "[[-1.0531687e-01 4.6885365e-01 -2.3671322e-01 -1.8820937e+00\n 1.6185204e+00 -1.4027666e+00]\n [ 2.5381237e-01 1.4413836e-03 4.2093030e-01 4.8759189e-01\n -4.2188829e-03 3.9118540e-01]\n [-1.0586361e+00 -1.4774603e+00 -1.0739057e+00 -7.6614118e-01\n -9.7447717e-01 -2.3193631e-01]\n [-2.1535511e-01 -1.3969159e+00 -8.9950317e-01 1.4095596e+00\n -8.5940725e-01 -9.3041465e-04]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/wNFPTiPNTuBjb09fkuoPbRJXr3TvjI+SZ/dPTOnl7xnW3g+JJhSvDuGFr4YocE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.04809951 0.00277038 0.09255505]\n [ 0.08217524 -0.05426951 0.17455606]\n [ 0.10821397 -0.01851234 0.24253617]\n [-0.01285366 -0.14699642 0.09454554]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9R8VpKzzEuMAWyUSwOMAXSUR0CkVVh0hePadX2UKGgGR7/Cnuy/sVtXaAdLAmgIR0CkVggGB4D+dX2UKGgGR7++57PY4ACGaAdLAmgIR0CkVbNTLns+dX2UKGgGR7/QrsjVx0dSaAdLBGgIR0CkVPpQcghbdX2UKGgGR7+8E0SAYpDvaAdLAmgIR0CkVhBInSfEdX2UKGgGR7+5QoCuEEkjaAdLAmgIR0CkVQI9cKPXdX2UKGgGR7/RiLVFx4puaAdLA2gIR0CkVb+nZTQ3dX2UKGgGR7/P5N47ihnKaAdLBGgIR0CkVWvsqrimdX2UKGgGR7/R9ytFKCg9aAdLA2gIR0CkVh9nbqQjdX2UKGgGR7/RjN6gM+eOaAdLA2gIR0CkVRGX5WRzdX2UKGgGR7/MJZ4fOlfraAdLBGgIR0CkVdLsjVx0dX2UKGgGR7/YGT9sJpnIaAdLBGgIR0CkVX8w5/9YdX2UKGgGR7/LGS6lLvkSaAdLA2gIR0CkViwnpjc3dX2UKGgGR7/PGwzLwF1TaAdLA2gIR0CkVR4/Vy3kdX2UKGgGR7/Fyhi9Zid8aAdLAmgIR0CkVjaqS5iFdX2UKGgGR7/GIVM23rleaAdLA2gIR0CkVeH1FpfydX2UKGgGR7/MJ7b+Lm6oaAdLA2gIR0CkVY47q6e5dX2UKGgGR7+nQnhKlHjIaAdLAWgIR0CkVZK3/givdX2UKGgGR7/IzyBkI5YHaAdLA2gIR0CkVS2dVea8dX2UKGgGR7/IBwMpgCwKaAdLA2gIR0CkVkPGIbfhdX2UKGgGR7/IiY9gWrOraAdLA2gIR0CkVe8kMTewdX2UKGgGR7/DhLGrCFbnaAdLAmgIR0CkVTX8wYcedX2UKGgGR7/JOGj9GZuyaAdLA2gIR0CkVZ+C04R3dX2UKGgGR7/EB+4LCvX9aAdLAmgIR0CkVk8D8tPIdX2UKGgGR7++IMz/IbOvaAdLAmgIR0CkVUFf7aZhdX2UKGgGR7/QKNyYG+sYaAdLA2gIR0CkVf/Ho5ggdX2UKGgGR7/GYdhiLEUCaAdLA2gIR0CkVbAR02cbdX2UKGgGR7/M3Ns3yZrpaAdLA2gIR0CkVlzundftdX2UKGgGR7/MjgydnTRZaAdLA2gIR0CkVU7uc+aCdX2UKGgGR7/UIYm9g4OuaAdLA2gIR0CkVg0NjLB9dX2UKGgGR7/J13dKujh2aAdLA2gIR0CkVcCbMHKPdX2UKGgGR7/V5YHPeHi4aAdLA2gIR0CkVm3Q2MsIdX2UKGgGR7/EmixmkFfRaAdLA2gIR0CkVV/EwWWQdX2UKGgGR7/VAEdNnGsFaAdLA2gIR0CkVh1hsqJ/dX2UKGgGR7/PkELYwqRVaAdLA2gIR0CkVnpsoDxLdX2UKGgGR7/XZ9NN8E3baAdLBGgIR0CkVdHZ9NN8dX2UKGgGR7/H3W4EwFkhaAdLA2gIR0CkVWyyD7IldX2UKGgGR7+SCrcTJyQxaAdLAWgIR0CkVoGm+CbudX2UKGgGR7+kbkwN9YwJaAdLAWgIR0CkVoXEZR8/dX2UKGgGR7/bLG7z06HTaAdLBGgIR0CkVjE+PikwdX2UKGgGR7/PolD4QBgeaAdLA2gIR0CkVXwrDqGDdX2UKGgGR7+3i0fHPu5SaAdLAmgIR0CkVo5sCT2WdX2UKGgGR7/aUrkKeCkHaAdLBGgIR0CkVeXv6TGHdX2UKGgGR7/SIrvsqrimaAdLA2gIR0CkVj5e7cwhdX2UKGgGR7+zqC6H0se5aAdLAmgIR0CkVYV/2Cd0dX2UKGgGR7/L+VC5VfeDaAdLA2gIR0CkVp7EYO2BdX2UKGgGR7/AB6KLsKLLaAdLAmgIR0CkVko0ZWJadX2UKGgGR7/KByS3b212aAdLA2gIR0CkVfZ9d/rjdX2UKGgGR7/PMX7+DOC5aAdLA2gIR0CkVZVoxpL3dX2UKGgGR7+1plBhQWN4aAdLAmgIR0CkVf77TDwZdX2UKGgGR7/IzabnX/YKaAdLA2gIR0CkVqvznRsudX2UKGgGR7/QA/cFhXr/aAdLA2gIR0CkVldKNAC5dX2UKGgGR7/BBbfP5YYBaAdLAmgIR0CkVgpAt4A0dX2UKGgGR7/Rb0e2d/ayaAdLA2gIR0CkVaUcOskqdX2UKGgGR7/N9VFQVKwqaAdLA2gIR0CkVrtorWiDdX2UKGgGR7/RIYFaB7NTaAdLA2gIR0CkVma9CeEqdX2UKGgGR7+wdxQzk6tDaAdLAmgIR0CkVa3R5TqCdX2UKGgGR7/F+AmReTmoaAdLA2gIR0CkVheHSF4+dX2UKGgGR7+xzbN8ma6SaAdLAmgIR0CkVm+iSJTEdX2UKGgGR7/MAKfFrEcbaAdLA2gIR0CkVsuYhMakdX2UKGgGR7+QqZtvXK8taAdLAWgIR0CkVnbeMyaedX2UKGgGR7/TxBmf5DZ2aAdLA2gIR0CkVb4GMXJpdX2UKGgGR7/S3qzJIUaiaAdLA2gIR0CkViemelKsdX2UKGgGR7++OwPiDM/yaAdLAmgIR0CkVcZvDP4VdX2UKGgGR7/Te2uxKQJYaAdLA2gIR0CkVoQVsUItdX2UKGgGR7+0OSW7e2uxaAdLAmgIR0CkVjBdD6WPdX2UKGgGR7/S1HvttyggaAdLA2gIR0CkVdXrt3OfdX2UKGgGR7/REgGKQ7tBaAdLA2gIR0CkVpNzjm0WdX2UKGgGR7/WaESM98qnaAdLA2gIR0CkVj+yiVSodX2UKGgGR7/keUILPUrkaAdLB2gIR0CkVu0VSGahdX2UKGgGR7/MLSeAd4mkaAdLBGgIR0CkVedXT3IudX2UKGgGR7/GbjLjghr4aAdLA2gIR0CkVvwOOKfndX2UKGgGR7/bvegte2NOaAdLBGgIR0CkVqd5prULdX2UKGgGR7/Y3NLUTcqOaAdLBGgIR0CkVlOh9LHudX2UKGgGR7/N26kIomXxaAdLA2gIR0CkVfZqubI+dX2UKGgGR7/LvhqCYkVvaAdLA2gIR0CkVwjvVmSRdX2UKGgGR7/EGGmDUVi4aAdLA2gIR0CkVrR5C4SZdX2UKGgGR7/U4/eLvTgEaAdLA2gIR0CkVmFJpWWAdX2UKGgGR7++fBeokzGhaAdLAmgIR0CkVnKeCkGidX2UKGgGR7/UWfbsWweOaAdLA2gIR0CkVg6FmFrVdX2UKGgGR7/CgezUqhDgaAdLA2gIR0CkVyHied08dX2UKGgGR7/QjFQ2uPmxaAdLA2gIR0CkVs3gUDdQdX2UKGgGR7/CXsw+MZP3aAdLAmgIR0CkVoFeOXE7dX2UKGgGR7/OEA5q/M4caAdLA2gIR0CkVzZGrjo7dX2UKGgGR7/JMzMzMzMzaAdLA2gIR0CkVuJiy6czdX2UKGgGR7/bYc/+sHSnaAdLBGgIR0CkVip2U0N0dX2UKGgGR7+XDBMzuWrwaAdLAWgIR0CkVjSBkI5YdX2UKGgGR7+8B2fTTfBOaAdLAmgIR0CkVvNT1kDqdX2UKGgGR7/gDklu3trsaAdLBGgIR0CkVqB7E5yVdX2UKGgGR7/Uc/dIoVmBaAdLA2gIR0CkV0/gBLf2dX2UKGgGR7/QUiY9gWrPaAdLA2gIR0CkVktT1kDqdX2UKGgGR7/K6ySmqHXVaAdLA2gIR0CkVwsunMt9dX2UKGgGR7+pD/lyR0U5aAdLAWgIR0CkVlPPkaMrdX2UKGgGR7/UhP0qYqoZaAdLA2gIR0CkV2qekHlfdX2UKGgGR7/W04R28qWkaAdLBGgIR0CkVsNITXardX2UKGgGR7/SDsMRYigTaAdLA2gIR0CkVyPC/GlzdX2UKGgGR7++PzWf9P1taAdLAmgIR0CkVtCmuTzNdX2UKGgGR7/Oadc0Ltu2aAdLA2gIR0CkVmwTVUdadX2UKGgGR7/Q37UG3WnTaAdLA2gIR0CkV4K9oN/fdX2UKGgGR7+2ndfsu3+daAdLAmgIR0CkVzY/eLvUdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbf7a4633dc88d7803b154bececfc8075535d8240e32c3866da459bf77dd9ef2
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7bde227ed39308337235255ae06b862be0d9507c8639d90d3eab2fd9e082b64
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe5feeb39a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe5feeae880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697969462879586980, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAX7DXvZYN8D7zZHK+svOBPs/svDothNc+Y4GHv2sdvb++dYm/DYZcviTOsr/XRWa/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx9uiPgT/jD6y8Zy+fhaKvvgkFD893wc/EdW9v3Flbr8J+Cu/+k0IPkGasr/Xf4C+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABfsNe9lg3wPvNkcr5y6PC/rSvPP9uNs7+y84E+z+y8Oi2E1z6lpfk+jj6Ku3RJyD5jgYe/ax29v751ib/UIUS/Vnd5v7aAbb4Nhly+JM6yv9dFZr9zbLQ/HQJcvxLnc7qUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.0531687e-01 4.6885365e-01 -2.3671322e-01]\n [ 2.5381237e-01 1.4413836e-03 4.2093030e-01]\n [-1.0586361e+00 -1.4774603e+00 -1.0739057e+00]\n [-2.1535511e-01 -1.3969159e+00 -8.9950317e-01]]", "desired_goal": "[[ 0.31808302 0.2753831 -0.3065315 ]\n [-0.26970285 0.5786891 0.5307501 ]\n [-1.4830648 -0.9312354 -0.67175347]\n [ 0.13310996 -1.3953325 -0.25097534]]", "observation": "[[-1.0531687e-01 4.6885365e-01 -2.3671322e-01 -1.8820937e+00\n 1.6185204e+00 -1.4027666e+00]\n [ 2.5381237e-01 1.4413836e-03 4.2093030e-01 4.8759189e-01\n -4.2188829e-03 3.9118540e-01]\n [-1.0586361e+00 -1.4774603e+00 -1.0739057e+00 -7.6614118e-01\n -9.7447717e-01 -2.3193631e-01]\n [-2.1535511e-01 -1.3969159e+00 -8.9950317e-01 1.4095596e+00\n -8.5940725e-01 -9.3041465e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/wNFPTiPNTuBjb09fkuoPbRJXr3TvjI+SZ/dPTOnl7xnW3g+JJhSvDuGFr4YocE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04809951 0.00277038 0.09255505]\n [ 0.08217524 -0.05426951 0.17455606]\n [ 0.10821397 -0.01851234 0.24253617]\n [-0.01285366 -0.14699642 0.09454554]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9R8VpKzzEuMAWyUSwOMAXSUR0CkVVh0hePadX2UKGgGR7/Cnuy/sVtXaAdLAmgIR0CkVggGB4D+dX2UKGgGR7++57PY4ACGaAdLAmgIR0CkVbNTLns+dX2UKGgGR7/QrsjVx0dSaAdLBGgIR0CkVPpQcghbdX2UKGgGR7+8E0SAYpDvaAdLAmgIR0CkVhBInSfEdX2UKGgGR7+5QoCuEEkjaAdLAmgIR0CkVQI9cKPXdX2UKGgGR7/RiLVFx4puaAdLA2gIR0CkVb+nZTQ3dX2UKGgGR7/P5N47ihnKaAdLBGgIR0CkVWvsqrimdX2UKGgGR7/R9ytFKCg9aAdLA2gIR0CkVh9nbqQjdX2UKGgGR7/RjN6gM+eOaAdLA2gIR0CkVRGX5WRzdX2UKGgGR7/MJZ4fOlfraAdLBGgIR0CkVdLsjVx0dX2UKGgGR7/YGT9sJpnIaAdLBGgIR0CkVX8w5/9YdX2UKGgGR7/LGS6lLvkSaAdLA2gIR0CkViwnpjc3dX2UKGgGR7/PGwzLwF1TaAdLA2gIR0CkVR4/Vy3kdX2UKGgGR7/Fyhi9Zid8aAdLAmgIR0CkVjaqS5iFdX2UKGgGR7/GIVM23rleaAdLA2gIR0CkVeH1FpfydX2UKGgGR7/MJ7b+Lm6oaAdLA2gIR0CkVY47q6e5dX2UKGgGR7+nQnhKlHjIaAdLAWgIR0CkVZK3/givdX2UKGgGR7/IzyBkI5YHaAdLA2gIR0CkVS2dVea8dX2UKGgGR7/IBwMpgCwKaAdLA2gIR0CkVkPGIbfhdX2UKGgGR7/IiY9gWrOraAdLA2gIR0CkVe8kMTewdX2UKGgGR7/DhLGrCFbnaAdLAmgIR0CkVTX8wYcedX2UKGgGR7/JOGj9GZuyaAdLA2gIR0CkVZ+C04R3dX2UKGgGR7/EB+4LCvX9aAdLAmgIR0CkVk8D8tPIdX2UKGgGR7++IMz/IbOvaAdLAmgIR0CkVUFf7aZhdX2UKGgGR7/QKNyYG+sYaAdLA2gIR0CkVf/Ho5ggdX2UKGgGR7/GYdhiLEUCaAdLA2gIR0CkVbAR02cbdX2UKGgGR7/M3Ns3yZrpaAdLA2gIR0CkVlzundftdX2UKGgGR7/MjgydnTRZaAdLA2gIR0CkVU7uc+aCdX2UKGgGR7/UIYm9g4OuaAdLA2gIR0CkVg0NjLB9dX2UKGgGR7/J13dKujh2aAdLA2gIR0CkVcCbMHKPdX2UKGgGR7/V5YHPeHi4aAdLA2gIR0CkVm3Q2MsIdX2UKGgGR7/EmixmkFfRaAdLA2gIR0CkVV/EwWWQdX2UKGgGR7/VAEdNnGsFaAdLA2gIR0CkVh1hsqJ/dX2UKGgGR7/PkELYwqRVaAdLA2gIR0CkVnpsoDxLdX2UKGgGR7/XZ9NN8E3baAdLBGgIR0CkVdHZ9NN8dX2UKGgGR7/H3W4EwFkhaAdLA2gIR0CkVWyyD7IldX2UKGgGR7+SCrcTJyQxaAdLAWgIR0CkVoGm+CbudX2UKGgGR7+kbkwN9YwJaAdLAWgIR0CkVoXEZR8/dX2UKGgGR7/bLG7z06HTaAdLBGgIR0CkVjE+PikwdX2UKGgGR7/PolD4QBgeaAdLA2gIR0CkVXwrDqGDdX2UKGgGR7+3i0fHPu5SaAdLAmgIR0CkVo5sCT2WdX2UKGgGR7/aUrkKeCkHaAdLBGgIR0CkVeXv6TGHdX2UKGgGR7/SIrvsqrimaAdLA2gIR0CkVj5e7cwhdX2UKGgGR7+zqC6H0se5aAdLAmgIR0CkVYV/2Cd0dX2UKGgGR7/L+VC5VfeDaAdLA2gIR0CkVp7EYO2BdX2UKGgGR7/AB6KLsKLLaAdLAmgIR0CkVko0ZWJadX2UKGgGR7/KByS3b212aAdLA2gIR0CkVfZ9d/rjdX2UKGgGR7/PMX7+DOC5aAdLA2gIR0CkVZVoxpL3dX2UKGgGR7+1plBhQWN4aAdLAmgIR0CkVf77TDwZdX2UKGgGR7/IzabnX/YKaAdLA2gIR0CkVqvznRsudX2UKGgGR7/QA/cFhXr/aAdLA2gIR0CkVldKNAC5dX2UKGgGR7/BBbfP5YYBaAdLAmgIR0CkVgpAt4A0dX2UKGgGR7/Rb0e2d/ayaAdLA2gIR0CkVaUcOskqdX2UKGgGR7/N9VFQVKwqaAdLA2gIR0CkVrtorWiDdX2UKGgGR7/RIYFaB7NTaAdLA2gIR0CkVma9CeEqdX2UKGgGR7+wdxQzk6tDaAdLAmgIR0CkVa3R5TqCdX2UKGgGR7/F+AmReTmoaAdLA2gIR0CkVheHSF4+dX2UKGgGR7+xzbN8ma6SaAdLAmgIR0CkVm+iSJTEdX2UKGgGR7/MAKfFrEcbaAdLA2gIR0CkVsuYhMakdX2UKGgGR7+QqZtvXK8taAdLAWgIR0CkVnbeMyaedX2UKGgGR7/TxBmf5DZ2aAdLA2gIR0CkVb4GMXJpdX2UKGgGR7/S3qzJIUaiaAdLA2gIR0CkViemelKsdX2UKGgGR7++OwPiDM/yaAdLAmgIR0CkVcZvDP4VdX2UKGgGR7/Te2uxKQJYaAdLA2gIR0CkVoQVsUItdX2UKGgGR7+0OSW7e2uxaAdLAmgIR0CkVjBdD6WPdX2UKGgGR7/S1HvttyggaAdLA2gIR0CkVdXrt3OfdX2UKGgGR7/REgGKQ7tBaAdLA2gIR0CkVpNzjm0WdX2UKGgGR7/WaESM98qnaAdLA2gIR0CkVj+yiVSodX2UKGgGR7/keUILPUrkaAdLB2gIR0CkVu0VSGahdX2UKGgGR7/MLSeAd4mkaAdLBGgIR0CkVedXT3IudX2UKGgGR7/GbjLjghr4aAdLA2gIR0CkVvwOOKfndX2UKGgGR7/bvegte2NOaAdLBGgIR0CkVqd5prULdX2UKGgGR7/Y3NLUTcqOaAdLBGgIR0CkVlOh9LHudX2UKGgGR7/N26kIomXxaAdLA2gIR0CkVfZqubI+dX2UKGgGR7/LvhqCYkVvaAdLA2gIR0CkVwjvVmSRdX2UKGgGR7/EGGmDUVi4aAdLA2gIR0CkVrR5C4SZdX2UKGgGR7/U4/eLvTgEaAdLA2gIR0CkVmFJpWWAdX2UKGgGR7++fBeokzGhaAdLAmgIR0CkVnKeCkGidX2UKGgGR7/UWfbsWweOaAdLA2gIR0CkVg6FmFrVdX2UKGgGR7/CgezUqhDgaAdLA2gIR0CkVyHied08dX2UKGgGR7/QjFQ2uPmxaAdLA2gIR0CkVs3gUDdQdX2UKGgGR7/CXsw+MZP3aAdLAmgIR0CkVoFeOXE7dX2UKGgGR7/OEA5q/M4caAdLA2gIR0CkVzZGrjo7dX2UKGgGR7/JMzMzMzMzaAdLA2gIR0CkVuJiy6czdX2UKGgGR7/bYc/+sHSnaAdLBGgIR0CkVip2U0N0dX2UKGgGR7+XDBMzuWrwaAdLAWgIR0CkVjSBkI5YdX2UKGgGR7+8B2fTTfBOaAdLAmgIR0CkVvNT1kDqdX2UKGgGR7/gDklu3trsaAdLBGgIR0CkVqB7E5yVdX2UKGgGR7/Uc/dIoVmBaAdLA2gIR0CkV0/gBLf2dX2UKGgGR7/QUiY9gWrPaAdLA2gIR0CkVktT1kDqdX2UKGgGR7/K6ySmqHXVaAdLA2gIR0CkVwsunMt9dX2UKGgGR7+pD/lyR0U5aAdLAWgIR0CkVlPPkaMrdX2UKGgGR7/UhP0qYqoZaAdLA2gIR0CkV2qekHlfdX2UKGgGR7/W04R28qWkaAdLBGgIR0CkVsNITXardX2UKGgGR7/SDsMRYigTaAdLA2gIR0CkVyPC/GlzdX2UKGgGR7++PzWf9P1taAdLAmgIR0CkVtCmuTzNdX2UKGgGR7/Oadc0Ltu2aAdLA2gIR0CkVmwTVUdadX2UKGgGR7/Q37UG3WnTaAdLA2gIR0CkV4K9oN/fdX2UKGgGR7+2ndfsu3+daAdLAmgIR0CkVzY/eLvUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (658 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.18233496276661754, "std_reward": 0.07001514881256109, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-22T11:08:12.638255"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063ac4a9857ba6a0201f9b9304c056904dd2955d1a1da9e13fbb7dc0b118b557
3
+ size 2636