File size: 12,573 Bytes
db57927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import copy
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import modules.scripts as scripts
from modules import images, processing
from modules.processing import process_images, Processed
from modules.shared import opts
from PIL import Image, ImageFilter, ImageColor, ImageOps
from pathlib import Path
from typing import List, Tuple, Iterable
#Returns a list of images located in the input path. For ControlNet iamges
def get_all_frames_from_path(path):
if not os.path.isdir(path):
return None
frame_list = []
for filename in sorted(os.listdir(path)):
if filename.endswith(".jpg") or filename.endswith(".png"):
img_path = os.path.join(path, filename)
img = cv2.imread(img_path)
if img is not None:
frame_list.append(img)
frame_list.insert(0, frame_list[0])
return frame_list
#Returns a list of images located in the input path. For Color iamges
def get_images_from_path(path):
if not os.path.isdir(path):
return None
images = []
for filename in os.listdir(path):
if filename.endswith('.jpg') or filename.endswith('.png'):
img_path = os.path.join(path, filename)
img = Image.open(img_path)
images.append(img)
images.append(images[-1])
images.insert(0, images[0])
return images
#Returns the number of the smallest number in the entire image sequence list. For ControlNet
def get_min_frame_num(video_list):
min_frame_num = -1
for video in video_list:
if video is None:
continue
else:
frame_num = len(video)
print(frame_num)
if min_frame_num < 0:
min_frame_num = frame_num
elif frame_num < min_frame_num:
min_frame_num = frame_num
return min_frame_num
#Blende method
def basic(target, blend, opacity):
return target * opacity + blend * (1-opacity)
def blender(func):
def blend(target, blend, opacity=1, *args):
res = func(target, blend, *args)
res = basic(res, blend, opacity)
return np.clip(res, 0, 1)
return blend
class Blend:
@classmethod
def method(cls, name):
return getattr(cls, name)
normal = basic
@staticmethod
@blender
def darken(target, blend, *args):
return np.minimum(target, blend)
@staticmethod
@blender
def multiply(target, blend, *args):
return target * blend
@staticmethod
@blender
def color_burn(target, blend, *args):
return 1 - (1-target)/blend
@staticmethod
@blender
def linear_burn(target, blend, *args):
return target+blend-1
@staticmethod
@blender
def lighten(target, blend, *args):
return np.maximum(target, blend)
@staticmethod
@blender
def screen(target, blend, *args):
return 1 - (1-target) * (1-blend)
@staticmethod
@blender
def color_dodge(target, blend, *args):
return target/(1-blend)
@staticmethod
@blender
def linear_dodge(target, blend, *args):
return target+blend
@staticmethod
@blender
def overlay(target, blend, *args):
return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
(target<=0.5) * (2*target*blend)
@staticmethod
@blender
def soft_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)*(1-(blend-0.5))) +\
(blend<=0.5) * (target*(blend+0.5))
@staticmethod
@blender
def hard_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)*(2-2*blend)) +\
(blend<=0.5) * (2*target*blend)
@staticmethod
@blender
def vivid_light(target, blend, *args):
return (blend>0.5) * (1 - (1-target)/(2*blend-1)) +\
(blend<=0.5) * (target/(1-2*blend))
@staticmethod
@blender
def linear_light(target, blend, *args):
return (blend>0.5) * (target + 2*(blend-0.5)) +\
(blend<=0.5) * (target + 2*blend)
@staticmethod
@blender
def pin_light(target, blend, *args):
return (blend>0.5) * np.maximum(target,2*(blend-0.5)) +\
(blend<=0.5) * np.minimum(target,2*blend)
@staticmethod
@blender
def difference(target, blend, *args):
return np.abs(target - blend)
@staticmethod
@blender
def exclusion(target, blend, *args):
return 0.5 - 2*(target-0.5)*(blend-0.5)
blend_methods = [i for i in Blend.__dict__.keys() if i[0]!='_' and i!='method']
def blend_images(base_img, blend_img, blend_method, blend_opacity, do_invert):
img_base = np.array(base_img.convert("RGB")).astype(np.float64)/255
if do_invert:
img_to_blend = ImageOps.invert(blend_img.convert('RGB'))
else:
img_to_blend = blend_img
img_to_blend = img_to_blend.resize((int(base_img.width), int(base_img.height)))
img_to_blend = np.array(img_to_blend.convert("RGB")).astype(np.float64)/255
img_blended = Blend.method(blend_method)(img_to_blend, img_base, blend_opacity)
img_blended *= 255
img_blended = Image.fromarray(img_blended.astype(np.uint8), mode='RGB')
return img_blended
#Define UI and script properties.
class Script(scripts.Script):
def title(self):
return "controlnet I2I sequence_toyxyz_v2"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
ctrls_group = ()
max_models = opts.data.get("control_net_max_models_num", 1)
input_list = []
with gr.Group():
with gr.Accordion("ControlNet-I2I-sequence-toyxyz", open = True):
with gr.Column():
feed_prev_frame = gr.Checkbox(value=False, label="Feed previous frame / Reduce flickering by feeding the previous frame image generated by Img2Img")
use_init_img = gr.Checkbox(value=False, label="Blend color image / Blend the color image sequence with the initial Img2Img image or previous frame")
use_TemporalNet = gr.Checkbox(value=False, label="Use TemporalNet / Using TemporalNet to reduce flicker between image sequences. Add TemporalNet in addition to the multi-controlnet you need. It should be placed at the end of the controlnet list.")
blendmode = gr.Dropdown(blend_methods, value='normal', label='Blend mode / Choose how to blend the color image with the Previous frame or Img2Img initial image')
opacityvalue = gr.Slider(0, 1, value=0, label="Opacity / Previous frame or Img2Img initial image + (color image * opacity)", info="Choose betwen 0 and 1")
for i in range(max_models):
input_path = gr.Textbox(label=f"ControlNet-{i}", placeholder="image sequence path")
input_list.append(input_path)
tone_image_path = gr.Textbox(label=f"Color_Image / Color images to be used for Img2Img in sequence", placeholder="image sequence path")
output_path = gr.Textbox(label=f"Output_path / Deletes the contents located in the path, and creates a new path if it does not exist", placeholder="Output path")
ctrls_group += tuple(input_list) + (use_TemporalNet, use_init_img, opacityvalue, blendmode, feed_prev_frame, tone_image_path, output_path)
return ctrls_group
#Image Generate Definition
def run(self, p, *args):
path = p.outpath_samples
output_path = args[-1] # get the last argument, which is the output path
feedprev = args[-3]
blendm = args[-4]
opacityval = args[-5]
useinit = args[-6]
usetempo = args[-7]
# Check whether the output path exists, if it does, delete it and create a new one.
if os.path.isdir(output_path):
for file in os.scandir(output_path):
os.remove(file.path)
else :
os.mkdir(output_path)
#Get the number of controlnet models.
video_num = opts.data.get("control_net_max_models_num", 1)
# Get the ControlNet image sequence list.
image_list = [get_all_frames_from_path(image) for image in args[:video_num]]
# Get a list of color image sequences.
color_image_list = get_images_from_path(args[-2])
# Get the first frame
previmg = p.init_images
tempoimg = p.init_images[0]
#If img2img color correction is enabled in webui settings, color correction is performed based on the first frame.
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
#Save initial img2img image
initial_image = p.init_images[0]
# Get the total number of frames.
frame_num = get_min_frame_num(image_list)
# image processing
if frame_num > 0:
output_image_list = []
for frame in range(frame_num):
copy_p = copy.copy(p)
copy_p.control_net_input_image = []
for video in image_list:
if video is None:
continue
copy_p.control_net_input_image.append(video[frame])
if usetempo == True :
copy_p.control_net_input_image.append(tempoimg)
if color_image_list and feedprev == False:
if frame<len(color_image_list):
tone_image = color_image_list[frame+1]
if useinit:
tone_image = blend_images(initial_image, tone_image, blendm, opacityval, False)
p.init_images = [tone_image.convert("RGB")]
proc = process_images(copy_p)
if feedprev == True and useinit == False:
if previmg is None:
continue
else:
previmg = proc.images[0]
if frame == 0:
previmg = initial_image
p.init_images = [previmg]
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
if feedprev == True and color_image_list and useinit:
if previmg is None:
continue
else:
previmg = proc.images[0]
if frame == 0:
previmg = initial_image
previmg = blend_images(previmg, color_image_list[frame+1], blendm, opacityval, False)
p.init_images = [previmg]
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
img = proc.images[0]
if usetempo == True :
if frame > 0 :
tempoimg = proc.images[0]
#Save image
if(frame>0):
images.save_image(img, output_path, f"Frame_{frame}")
copy_p.close()
else:
proc = process_images(p)
return proc |