File size: 15,583 Bytes
6770eb9
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a49d38d89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49d38d26c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690645180960895959, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+1x+gPvvsj71LRPY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxDUKPUOSir+Ao/C9DaGXv9pkVb9zNus+tViHvbQQpT7CGeI+Skh/PwM6sr8QNJI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjrvXH6A+++yPvUtE9j7RXpo86qb1u2YpjruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.31274292 -0.07027622  0.48098978]\n [ 0.31274292 -0.07027622  0.48098978]\n [ 0.31274292 -0.07027622  0.48098978]\n [ 0.31274292 -0.07027622  0.48098978]]", "desired_goal": "[[ 0.03374268 -1.0825886  -0.11749935]\n [-1.1846024  -0.8335701   0.4593998 ]\n [-0.06608716  0.32239306  0.44160277]\n [ 0.9971968  -1.3923954   1.1422138 ]]", "observation": "[[ 0.31274292 -0.07027622  0.48098978  0.01884404 -0.0074967  -0.00433843]\n [ 0.31274292 -0.07027622  0.48098978  0.01884404 -0.0074967  -0.00433843]\n [ 0.31274292 -0.07027622  0.48098978  0.01884404 -0.0074967  -0.00433843]\n [ 0.31274292 -0.07027622  0.48098978  0.01884404 -0.0074967  -0.00433843]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaYDVPXEJm7x2SYg+/eIAPYCMDz7kbhQ+F+trvdKfvT2j2k0+t76nvSJNJb0BzPI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.10424883 -0.0189254   0.26618546]\n [ 0.03146647  0.1401844   0.14495426]\n [-0.05759725  0.09258999  0.20102935]\n [-0.08190673 -0.04035676  0.11855317]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/5YA/FMq77+UhpRSlIwBbJRLMowBdJRHQKVWqWweNkx1fZQoaAZoCWgPQwhuisdFtcjyv5SGlFKUaBVLMmgWR0ClVmtmDlHSdX2UKGgGaAloD0MI6svSTs0l+b+UhpRSlGgVSzJoFkdApVYr2+PBBXV9lChoBmgJaA9DCA/wpIXLqve/lIaUUpRoFUsyaBZHQKVV61pj+aV1fZQoaAZoCWgPQwhtV+iDZSz3v5SGlFKUaBVLMmgWR0ClV9EpRXOodX2UKGgGaAloD0MIOLwgIjXt9b+UhpRSlGgVSzJoFkdApVeTJW/8EXV9lChoBmgJaA9DCJJ6T+W0Z/i/lIaUUpRoFUsyaBZHQKVXU6ClJpZ1fZQoaAZoCWgPQwhcyY6NQDzzv5SGlFKUaBVLMmgWR0ClVxMw+MZQdX2UKGgGaAloD0MIMIFbd/NU6b+UhpRSlGgVSzJoFkdApVj2Kbayr3V9lChoBmgJaA9DCLKC34YYr+q/lIaUUpRoFUsyaBZHQKVYuBoVVPx1fZQoaAZoCWgPQwiQwYpTrQX5v5SGlFKUaBVLMmgWR0ClWHin5zo2dX2UKGgGaAloD0MI4PQu3o8b/b+UhpRSlGgVSzJoFkdApVg4QBgeBHV9lChoBmgJaA9DCLaCpiVWBvy/lIaUUpRoFUsyaBZHQKVaFDkU9IR1fZQoaAZoCWgPQwgtXiwMkdP6v5SGlFKUaBVLMmgWR0ClWdX8GcFydX2UKGgGaAloD0MI4nSSrS5n8b+UhpRSlGgVSzJoFkdApVmWT/yXlnV9lChoBmgJaA9DCA1v1uB9FfK/lIaUUpRoFUsyaBZHQKVZVd/J/5N1fZQoaAZoCWgPQwjwMsNGWb/0v5SGlFKUaBVLMmgWR0ClWzGq5sj3dX2UKGgGaAloD0MIiJ//Hrz247+UhpRSlGgVSzJoFkdApVrzsY2sJnV9lChoBmgJaA9DCEOR7ucU5OW/lIaUUpRoFUsyaBZHQKVatDZUT+N1fZQoaAZoCWgPQwgUl+MViB7xv5SGlFKUaBVLMmgWR0ClWnO01IiDdX2UKGgGaAloD0MIscHCSZo/7b+UhpRSlGgVSzJoFkdApVxQjW07bXV9lChoBmgJaA9DCB+5Nem2ROq/lIaUUpRoFUsyaBZHQKVcEpON5t51fZQoaAZoCWgPQwi29j5VhQbrv5SGlFKUaBVLMmgWR0ClW9MQ2/BWdX2UKGgGaAloD0MIOne7Xpri87+UhpRSlGgVSzJoFkdApVuSgTRIBnV9lChoBmgJaA9DCDI4Sl6dY+G/lIaUUpRoFUsyaBZHQKVda6xPfsN1fZQoaAZoCWgPQwhN27+y0iT0v5SGlFKUaBVLMmgWR0ClXS2hh6SldX2UKGgGaAloD0MISx+6oL4l+b+UhpRSlGgVSzJoFkdApVzuHN5dGHV9lChoBmgJaA9DCLvRx3xAYPC/lIaUUpRoFUsyaBZHQKVcrawD/2l1fZQoaAZoCWgPQwj7ko0HW6zzv5SGlFKUaBVLMmgWR0ClXofChvitdX2UKGgGaAloD0MI4UVfQZox7L+UhpRSlGgVSzJoFkdApV5Jo4+8oXV9lChoBmgJaA9DCOEoeXWOgei/lIaUUpRoFUsyaBZHQKVeCfPHDJl1fZQoaAZoCWgPQwjv5xTkZyPvv5SGlFKUaBVLMmgWR0ClXcl3pwCKdX2UKGgGaAloD0MI+3WnO0+847+UhpRSlGgVSzJoFkdApV+lvl2eQXV9lChoBmgJaA9DCOPg0jHn2fC/lIaUUpRoFUsyaBZHQKVfZ6Q/5cl1fZQoaAZoCWgPQwihMCjTaHLtv5SGlFKUaBVLMmgWR0ClXyfGdZq3dX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdApV7nK8tf5XV9lChoBmgJaA9DCHXmHhK+d+2/lIaUUpRoFUsyaBZHQKVgvv5xiod1fZQoaAZoCWgPQwhPB7KeWv3xv5SGlFKUaBVLMmgWR0ClYIEBCD28dX2UKGgGaAloD0MI3nNgOUIG9L+UhpRSlGgVSzJoFkdApWBBVAAyVXV9lChoBmgJaA9DCDYgQlw5O/O/lIaUUpRoFUsyaBZHQKVgALmZE2J1fZQoaAZoCWgPQwgVHF4QkRrtv5SGlFKUaBVLMmgWR0ClYdwsf7rLdX2UKGgGaAloD0MI5ssLsI8O8r+UhpRSlGgVSzJoFkdApWGeCXhOxnV9lChoBmgJaA9DCO4E+69zk/i/lIaUUpRoFUsyaBZHQKVhXm5lOGl1fZQoaAZoCWgPQwjqr1dYcH/wv5SGlFKUaBVLMmgWR0ClYR3ta6jGdX2UKGgGaAloD0MIe0ljtI4q8L+UhpRSlGgVSzJoFkdApWMFbeMyanV9lChoBmgJaA9DCDfg88MI4ee/lIaUUpRoFUsyaBZHQKVix2QGOdZ1fZQoaAZoCWgPQwiWWYRiK+jiv5SGlFKUaBVLMmgWR0ClYofi5uqFdX2UKGgGaAloD0MIbvqzHymi7b+UhpRSlGgVSzJoFkdApWJHc580DXV9lChoBmgJaA9DCAdF8wAWeem/lIaUUpRoFUsyaBZHQKVkKnqmj0t1fZQoaAZoCWgPQwhZ+Ppal9r6v5SGlFKUaBVLMmgWR0ClY+x7AtWddX2UKGgGaAloD0MI0V0SZ0XU67+UhpRSlGgVSzJoFkdApWOs7bL2YnV9lChoBmgJaA9DCGxfQC/cOey/lIaUUpRoFUsyaBZHQKVjbHcUM5R1fZQoaAZoCWgPQwia0CSxpFzqv5SGlFKUaBVLMmgWR0ClZVFUADJVdX2UKGgGaAloD0MI4lZBDHRt67+UhpRSlGgVSzJoFkdApWUTUG3WnXV9lChoBmgJaA9DCPiJA+j3/ei/lIaUUpRoFUsyaBZHQKVk086mwaB1fZQoaAZoCWgPQwifAIqRJTP3v5SGlFKUaBVLMmgWR0ClZJM/Y8MedX2UKGgGaAloD0MILo81I4Pc5b+UhpRSlGgVSzJoFkdApWabi++M63V9lChoBmgJaA9DCP2hmSfX1Pa/lIaUUpRoFUsyaBZHQKVmXk6tDD11fZQoaAZoCWgPQwitvU9VoQHsv5SGlFKUaBVLMmgWR0ClZh6yB06pdX2UKGgGaAloD0MI81fIXBmU8r+UhpRSlGgVSzJoFkdApWXeOZLIxXV9lChoBmgJaA9DCJnU0AZgA+y/lIaUUpRoFUsyaBZHQKVnw+yquKZ1fZQoaAZoCWgPQwhCP1OvW4Tlv5SGlFKUaBVLMmgWR0ClZ4X4j8k2dX2UKGgGaAloD0MIy59vC5bq57+UhpRSlGgVSzJoFkdApWdGSIP9UHV9lChoBmgJaA9DCCQnE7cKYuG/lIaUUpRoFUsyaBZHQKVnBdCVryl1fZQoaAZoCWgPQwir7Lsi+N/yv5SGlFKUaBVLMmgWR0ClaOtMwlBydX2UKGgGaAloD0MInYL8bOS637+UhpRSlGgVSzJoFkdApWitV3ljmXV9lChoBmgJaA9DCJiFdk6zQO6/lIaUUpRoFUsyaBZHQKVobeD3/Px1fZQoaAZoCWgPQwj+uWjIeBTwv5SGlFKUaBVLMmgWR0ClaC1b7j1gdX2UKGgGaAloD0MIk40HW+z24L+UhpRSlGgVSzJoFkdApWoNbkfcOHV9lChoBmgJaA9DCKCnAYOkT/O/lIaUUpRoFUsyaBZHQKVpz3WWhRJ1fZQoaAZoCWgPQwiS6ju/KEHkv5SGlFKUaBVLMmgWR0ClaZALiMo+dX2UKGgGaAloD0MI8Ief/x488r+UhpRSlGgVSzJoFkdApWlPnQpnYnV9lChoBmgJaA9DCJEr9SwI5eO/lIaUUpRoFUsyaBZHQKVrNlEqlP91fZQoaAZoCWgPQwgrweJw5tfgv5SGlFKUaBVLMmgWR0ClavhTn7pFdX2UKGgGaAloD0MI3e9QFOgT4b+UhpRSlGgVSzJoFkdApWq4wIt16nV9lChoBmgJaA9DCEPKT6p9OuO/lIaUUpRoFUsyaBZHQKVqeCqZML51fZQoaAZoCWgPQwju68A5I0rpv5SGlFKUaBVLMmgWR0ClbGW4Vh1DdX2UKGgGaAloD0MIvvkNEw1S1b+UhpRSlGgVSzJoFkdApWwnmHP/rHV9lChoBmgJaA9DCEevBigNNeC/lIaUUpRoFUsyaBZHQKVr6BXjlxR1fZQoaAZoCWgPQwjhXwSNmcTqv5SGlFKUaBVLMmgWR0Cla6eY+jdpdX2UKGgGaAloD0MIrMWnABjP2L+UhpRSlGgVSzJoFkdApW2LlzU7S3V9lChoBmgJaA9DCAdhbvdyn9e/lIaUUpRoFUsyaBZHQKVtTacI7eV1fZQoaAZoCWgPQwiWQiCXOPLmv5SGlFKUaBVLMmgWR0ClbQ5FocrBdX2UKGgGaAloD0MIeGAA4UMJ57+UhpRSlGgVSzJoFkdApWzNyR0U5HV9lChoBmgJaA9DCJy/CYUI+PO/lIaUUpRoFUsyaBZHQKVutH80k4Z1fZQoaAZoCWgPQwgfuqC+ZU7zv5SGlFKUaBVLMmgWR0ClbnZ5iVjadX2UKGgGaAloD0MIgSGrWz0n5L+UhpRSlGgVSzJoFkdApW43AwfyPXV9lChoBmgJaA9DCDHT9q+stPa/lIaUUpRoFUsyaBZHQKVt9o/zJ6p1fZQoaAZoCWgPQwgEyqZc4V3av5SGlFKUaBVLMmgWR0Clb95dWyTqdX2UKGgGaAloD0MImn0eozzz4r+UhpRSlGgVSzJoFkdApW+gZXMhYHV9lChoBmgJaA9DCImWPJ6WH9y/lIaUUpRoFUsyaBZHQKVvYOPvKEF1fZQoaAZoCWgPQwjtKqT8pNrfv5SGlFKUaBVLMmgWR0ClbyBgE2YOdX2UKGgGaAloD0MI8bc9QWK737+UhpRSlGgVSzJoFkdApXEGmHgxanV9lChoBmgJaA9DCBYx7DAmffO/lIaUUpRoFUsyaBZHQKVwyJTER8N1fZQoaAZoCWgPQwgDkxtF1hr3v5SGlFKUaBVLMmgWR0ClcIkOqebvdX2UKGgGaAloD0MI10y+2eZG/L+UhpRSlGgVSzJoFkdApXBIlIEr5XV9lChoBmgJaA9DCGJM+nspvOu/lIaUUpRoFUsyaBZHQKVyLIxQBPt1fZQoaAZoCWgPQwgDllzF4rfrv5SGlFKUaBVLMmgWR0Clce6Rp1zRdX2UKGgGaAloD0MIPglszsFz9L+UhpRSlGgVSzJoFkdApXGvCbc453V9lChoBmgJaA9DCPevrDQphee/lIaUUpRoFUsyaBZHQKVxbp3X7Lt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}