|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" MegatronGPT model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class MegatronGPTConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MegatronGPTModel`]. It is used to instantiate an |
|
MegatronGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the MegatronGPT 1.4B parameter architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50432): |
|
Vocabulary size of the MegatronGPT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MegatronGPTModel`]. |
|
hidden_size (`int`, *optional*, defaults to 6144): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 44): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 24576): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
bias (`bool`, *optional*, defaults to True) |
|
Whether or not to include a bias in every linear layer |
|
rotary_pct (`float`, *optional*, defaults to 0.25): |
|
percentage of hidden dimensions to allocate to rotary embeddings |
|
rotary_emb_base (`int`, *optional*, defaults to 10000) |
|
base for computing rotary embeddings frequency |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio probability of the attention score. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp |
|
hidden states. |
|
classifier_dropout (`float`, *optional*, defaults to 0.1): |
|
Argument used when doing token classification, used in the model [`MegatronGPTForTokenClassification`]. |
|
The dropout ratio for the hidden layer. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
normalize_attention_scores (`bool`, *optional*, defaults to `True`) |
|
Whether to scale the output Q * K^T by 1 / sqrt(hidden_size_per_head). |
|
initializer_range (`float`, *optional*, defaults to 1e-5): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
normalization (`string`, *optional*, defaults to `layernorm1p`) |
|
The type of normalization to use for the LayerNorm layers, either `layernorm` or `layernorm1p` |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
self_attention_relative_position_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to calculate and apply the relative position bias within the attention function. |
|
If this is False, then model.generate will require you to calculate the triangular attention |
|
mask and pass it through in the attention mask. |
|
skip_flash_attention (`bool`, *optional*, defaults to `False`): |
|
When calculating attention, whether to attempt to use flash attention if it's installed, or to always skip and use the regular method. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling |
|
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format |
|
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
|
|
""" |
|
model_type = "megatron_gpt" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=56064, |
|
hidden_size=2048, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
intermediate_size=5440, |
|
hidden_act="fast-swiglu", |
|
bias=True, |
|
rotary_pct=0.5, |
|
rotary_emb_base=10000, |
|
attention_dropout=0.0, |
|
hidden_dropout=0.0, |
|
classifier_dropout=0.0, |
|
normalize_attention_scores=True, |
|
max_position_embeddings=2048, |
|
initializer_range=0.01, |
|
layer_norm_eps=1e-5, |
|
normalization='layernorm1p', |
|
use_cache=True, |
|
self_attention_relative_position_bias=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_scaling=None, |
|
skip_flash_attention=False, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.bias = bias |
|
self.rotary_pct = rotary_pct |
|
self.rotary_emb_base = rotary_emb_base |
|
self.attention_dropout = attention_dropout |
|
self.hidden_dropout = hidden_dropout |
|
self.classifier_dropout = classifier_dropout |
|
self.normalize_attention_scores = normalize_attention_scores |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.normalization = normalization |
|
self.use_cache = use_cache |
|
self.self_attention_relative_position_bias = self_attention_relative_position_bias |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.skip_flash_attention = skip_flash_attention |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
|
|
if self.hidden_size % self.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size is not divisble by the number of attention heads! Make sure to update them!" |
|
) |
|
|
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") |
|
|