ppo-LunarLander-v2 / config.json
dhmeltzer's picture
Upload PPO LunarLander-v2 trained agent
638b31c
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e83104cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e83104d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e83104dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e83104e60>", "_build": "<function ActorCriticPolicy._build at 0x7f2e83104ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e83104f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e8310b050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e8310b0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e8310b170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e8310b200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e8310b290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e831586c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667592576474882472, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADVgjb7+uVs/YoSwPMt+i77Cew++fVfjPQAAAAAAAAAAGh6gPa4PgLo3XCq4f3yls0HuaDtidEM3AACAPwAAgD9GuwC+pPsJu3I8kbQ1awqytxm0O/ivpzMAAIA/AACAP+ZLAj32zHW6vGGzOLEZgzPHhzi7xlvRtwAAgD8AAIA/AJ5MvdIYh7ueWWE95Sz2PFFk7jyeT829AACAPwAAgD9apLM9FGyVuiNDOLnZkLY1YB2bOGiZVDgAAIA/AAAAAJqtTzyFA7S5tXPPus0E07JNq8g6G/jxOQAAgD8AAIA/JjyDPQu2+j25qqC9x+livpBiAb23Cyw9AAAAAAAAAAAA0Kq6XBdPukdwjrs7KtW2QNMGO/IuozoAAIA/AACAP00JLj1c82C6zVnYufcUqrRmFLu6oyz+OAAAgD8AAIA/zb5rPfbMHroe8Fy5EJeJtItejDvVnIE4AACAPwAAgD+aCcK8wwkpugsilbqABle1DaC5OpK6qzkAAIA/AACAP2ZvJj2u5/K4iSwROY3EZLP9U667u9ktuAAAgD8AAIA/moFuPLBdtz+VR1g+j0C/Pd3OdjwGECo+AAAAAAAAAACzIQA9KQBEuti9erqXjYO1arHdOtKSkzkAAIA/AACAP+arMz1ce2y64ciiOonz8zU1pT47cEu9uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4zeFlQqcYkCUhpRSlIwBbJRN6AOMAXSUR0CQu2VIqbz9dX2UKGgGaAloD0MIXWqEfqa1X0CUhpRSlGgVTegDaBZHQJC775XU6Pt1fZQoaAZoCWgPQwgYey++6NZgQJSGlFKUaBVN6ANoFkdAkL9bsv7FbXV9lChoBmgJaA9DCKfria4Lb05AlIaUUpRoFUv1aBZHQJDBBi2Dxsl1fZQoaAZoCWgPQwjj3ZGx2nhNQJSGlFKUaBVNHgFoFkdAkMOIL1EmY3V9lChoBmgJaA9DCGPshJfgkGRAlIaUUpRoFU3oA2gWR0CQxZA1ejVQdX2UKGgGaAloD0MIw35PrNP4ZkCUhpRSlGgVTegDaBZHQJDJAZ4wAVB1fZQoaAZoCWgPQwiHTWTmAh9aQJSGlFKUaBVN6ANoFkdAkNRrcj7hvXV9lChoBmgJaA9DCGh6ibFMy11AlIaUUpRoFU3oA2gWR0CQ1KtgrpaBdX2UKGgGaAloD0MIzVoKSHuNZkCUhpRSlGgVTegDaBZHQJDVwvRJEpl1fZQoaAZoCWgPQwiRup19ZVhkQJSGlFKUaBVN6ANoFkdAkN5HU2DQJHV9lChoBmgJaA9DCLUWZqGdaF5AlIaUUpRoFU3oA2gWR0CQ4Exm03OwdX2UKGgGaAloD0MIx5v8Fp3xX0CUhpRSlGgVTegDaBZHQJDjHNA1Nxl1fZQoaAZoCWgPQwjFAfT7frdgQJSGlFKUaBVN6ANoFkdAkObTKs+3Y3V9lChoBmgJaA9DCLhbkgP2KGNAlIaUUpRoFU3oA2gWR0CQ67hd+ocadX2UKGgGaAloD0MIfJqTFxmkY0CUhpRSlGgVTegDaBZHQJDuDvttygh1fZQoaAZoCWgPQwg+PbZlQHlgQJSGlFKUaBVN6ANoFkdAkPVIXO4XoHV9lChoBmgJaA9DCOza3m7JXGRAlIaUUpRoFU3oA2gWR0CQ9dky1uzhdX2UKGgGaAloD0MI+rmhKbt0ZUCUhpRSlGgVTegDaBZHQJD5XShJyyV1fZQoaAZoCWgPQwjyI37FmjxnQJSGlFKUaBVN6ANoFkdAkPsS925hB3V9lChoBmgJaA9DCMU9lj50YGNAlIaUUpRoFU3oA2gWR0CQ/XFWn0kGdX2UKGgGaAloD0MIeJeL+M6LYkCUhpRSlGgVTegDaBZHQJD/hQ0oBq91fZQoaAZoCWgPQwj/WfPjL/NjQJSGlFKUaBVN6ANoFkdAkQLnB+F10XV9lChoBmgJaA9DCAEZOnbQuWBAlIaUUpRoFU3oA2gWR0CRDWaMJhOQdX2UKGgGaAloD0MIeCXJc/0eYkCUhpRSlGgVTegDaBZHQJENqeg+Qlt1fZQoaAZoCWgPQwjrjO+LS9UEQJSGlFKUaBVLx2gWR0CRDhx/ustDdX2UKGgGaAloD0MIOiS1ULK5YUCUhpRSlGgVTegDaBZHQJEOssYl6Z91fZQoaAZoCWgPQwjmyTUFMsRlQJSGlFKUaBVN6ANoFkdAkRbGWUr08XV9lChoBmgJaA9DCECEuHL2oWRAlIaUUpRoFU3oA2gWR0CRGKm+CbtrdX2UKGgGaAloD0MIPDHrxVD5YkCUhpRSlGgVTegDaBZHQJEbKHi3ocJ1fZQoaAZoCWgPQwg09bpF4GhmQJSGlFKUaBVN6ANoFkdAkR5YqslsxnV9lChoBmgJaA9DCINQ3sfRmWZAlIaUUpRoFU3oA2gWR0CRIvsP8Q7LdX2UKGgGaAloD0MI4srZOyNTaECUhpRSlGgVTegDaBZHQJElvTXrdFh1fZQoaAZoCWgPQwgofSHkvCxoQJSGlFKUaBVN6ANoFkdAkVtCsbNr03V9lChoBmgJaA9DCOmayTfbN1tAlIaUUpRoFU3oA2gWR0CRW+SrHU+cdX2UKGgGaAloD0MILXdmguHAYkCUhpRSlGgVTegDaBZHQJFfx70Fr2x1fZQoaAZoCWgPQwho5sk1BdVgQJSGlFKUaBVN6ANoFkdAkWGbZvkzXXV9lChoBmgJaA9DCDXwoxp2FmJAlIaUUpRoFU3oA2gWR0CRZDX0Gu9wdX2UKGgGaAloD0MI0nKgh9q+YUCUhpRSlGgVTegDaBZHQJFmC2PT5O91fZQoaAZoCWgPQwjF4jeFFflkQJSGlFKUaBVN6ANoFkdAkXN75mAbynV9lChoBmgJaA9DCNOjqZ7MHWFAlIaUUpRoFU3oA2gWR0CRc7iWVu76dX2UKGgGaAloD0MIjxmojP8eYkCUhpRSlGgVTegDaBZHQJF0JeWv8qF1fZQoaAZoCWgPQwiBkgIL4HFiQJSGlFKUaBVN6ANoFkdAkXSxRZU1h3V9lChoBmgJaA9DCADICRNGW11AlIaUUpRoFU3oA2gWR0CRfKz+3pfQdX2UKGgGaAloD0MIAJF++7p9YUCUhpRSlGgVTegDaBZHQJF+ZDlYEGJ1fZQoaAZoCWgPQwh4f7xXLX1mQJSGlFKUaBVN6ANoFkdAkYCyI+GGmHV9lChoBmgJaA9DCONUa2EWm29AlIaUUpRoFU3QAmgWR0CRgwJW/8EWdX2UKGgGaAloD0MIK2wGuKBHYECUhpRSlGgVTegDaBZHQJGDrH+6y0N1fZQoaAZoCWgPQwgHYtnMIVFhQJSGlFKUaBVN6ANoFkdAkYe4SYgJTnV9lChoBmgJaA9DCGVUGcZdFmVAlIaUUpRoFU3oA2gWR0CRia+10DEFdX2UKGgGaAloD0MIDhZO0vxFYkCUhpRSlGgVTegDaBZHQJGQBXRw6yV1fZQoaAZoCWgPQwiXAz3Utq5iQJSGlFKUaBVN6ANoFkdAkZPTh99c8nV9lChoBmgJaA9DCKcFL/oK5GVAlIaUUpRoFU3oA2gWR0CRlVqIacZtdX2UKGgGaAloD0MIH/KWq5/TYkCUhpRSlGgVTegDaBZHQJGXnUvwmVt1fZQoaAZoCWgPQwja5Vsf1h1nQJSGlFKUaBVN6ANoFkdAkZloDDCP63V9lChoBmgJaA9DCMr+eRqwr2ZAlIaUUpRoFU3oA2gWR0CRp1GRV6u5dX2UKGgGaAloD0MIQpdw6K33YkCUhpRSlGgVTegDaBZHQJGnlStNi6R1fZQoaAZoCWgPQwhqatla30pnQJSGlFKUaBVN6ANoFkdAkagN5Qgs9XV9lChoBmgJaA9DCPqcu10v82RAlIaUUpRoFU3oA2gWR0CRqJfms/6gdX2UKGgGaAloD0MIEaeTbPW/cUCUhpRSlGgVTewCaBZHQJGqTY4ACGN1fZQoaAZoCWgPQwhh/DTuzVdkQJSGlFKUaBVN6ANoFkdAkbAxouf29XV9lChoBmgJaA9DCJQT7Sqk/2ZAlIaUUpRoFU3oA2gWR0CRsfuW8h9tdX2UKGgGaAloD0MID9O+uT9YZkCUhpRSlGgVTegDaBZHQJG0erLhaTx1fZQoaAZoCWgPQwgpeXWOAZJjQJSGlFKUaBVN6ANoFkdAkbcvReC04XV9lChoBmgJaA9DCMHkRpG1AF5AlIaUUpRoFU3oA2gWR0CRvM0/4ZdfdX2UKGgGaAloD0MIx3+BIMBkY0CUhpRSlGgVTegDaBZHQJG/QM1CPZJ1fZQoaAZoCWgPQwiEYito2s9iQJSGlFKUaBVN6ANoFkdAkcaXMINVinV9lChoBmgJaA9DCE/qy9LOyWBAlIaUUpRoFU3oA2gWR0CR+imhdt2tdX2UKGgGaAloD0MIglSKHQ1KYUCUhpRSlGgVTegDaBZHQJH8Fb4agmJ1fZQoaAZoCWgPQwgbgXhdv49eQJSGlFKUaBVN6ANoFkdAkf6/k3juKHV9lChoBmgJaA9DCAu3fCQltGdAlIaUUpRoFU3oA2gWR0CSAL4ubqhUdX2UKGgGaAloD0MIrRdDOdEvZ0CUhpRSlGgVTegDaBZHQJIP08YAKfF1fZQoaAZoCWgPQwh80okE06lkQJSGlFKUaBVN6ANoFkdAkhAV+y7f53V9lChoBmgJaA9DCIMXfQVpT2FAlIaUUpRoFU3oA2gWR0CSEIgL7XQMdX2UKGgGaAloD0MIQ1n4+tryZUCUhpRSlGgVTegDaBZHQJIRDmyPdVN1fZQoaAZoCWgPQwhpccYwJ4hjQJSGlFKUaBVN6ANoFkdAkhK5EhJRO3V9lChoBmgJaA9DCCJVFK+y82NAlIaUUpRoFU3oA2gWR0CSGGucMEzPdX2UKGgGaAloD0MIHZPF/cdVZkCUhpRSlGgVTegDaBZHQJIaAdkrf+F1fZQoaAZoCWgPQwjq6Lga2RZkQJSGlFKUaBVN6ANoFkdAkhxEAxSHd3V9lChoBmgJaA9DCM6N6QlLjWFAlIaUUpRoFU3oA2gWR0CSHpxp+MIedX2UKGgGaAloD0MIKcsQx7oKZUCUhpRSlGgVTegDaBZHQJIjl7kXDWN1fZQoaAZoCWgPQwiu00hL5bpgQJSGlFKUaBVN6ANoFkdAkiW1zU7SzHV9lChoBmgJaA9DCPmGwmdrJ2RAlIaUUpRoFU3oA2gWR0CSLK0BwMpgdX2UKGgGaAloD0MI7bsi+N8qZUCUhpRSlGgVTegDaBZHQJIxB5IH1OF1fZQoaAZoCWgPQwjW4lMAjGJhQJSGlFKUaBVN6ANoFkdAkjLf8Q7LdXV9lChoBmgJaA9DCCi37XvUWmJAlIaUUpRoFU3oA2gWR0CSNUfEGZ/kdX2UKGgGaAloD0MIHXIz3ICUZECUhpRSlGgVTegDaBZHQJI3F7hNucd1fZQoaAZoCWgPQwiMuWsJ+ZdhQJSGlFKUaBVN6ANoFkdAkkUM3AEdNnV9lChoBmgJaA9DCE95dCOsU2JAlIaUUpRoFU3oA2gWR0CSRUjEehf0dX2UKGgGaAloD0MIcvikEwnTZUCUhpRSlGgVTegDaBZHQJJFuYfGMn91fZQoaAZoCWgPQwiNYrml1TlYQJSGlFKUaBVN6ANoFkdAkkY6LXL/0nV9lChoBmgJaA9DCIB9dOrKH2VAlIaUUpRoFU3oA2gWR0CSR792X9iudX2UKGgGaAloD0MImN2Th4XQZUCUhpRSlGgVTegDaBZHQJJOQow22oh1fZQoaAZoCWgPQwj5MeaupX9iQJSGlFKUaBVN6ANoFkdAklCoGlhw2nV9lChoBmgJaA9DCAxXB0DcfWRAlIaUUpRoFU3oA2gWR0CSU89du5z6dX2UKGgGaAloD0MIl1ZD4h5+ZECUhpRSlGgVTegDaBZHQJJXK8f3evZ1fZQoaAZoCWgPQwgZWMfxQwJkQJSGlFKUaBVN6ANoFkdAkl5uP/7zkXV9lChoBmgJaA9DCOvhy0SRGWVAlIaUUpRoFU3oA2gWR0CSYb5+YtxudX2UKGgGaAloD0MI28TJ/Q7+ZkCUhpRSlGgVTegDaBZHQJJsCCK77Kt1fZQoaAZoCWgPQwhGJuDXSEtjQJSGlFKUaBVN6ANoFkdAknBQNsnAqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}