File size: 1,683 Bytes
69a0495
c8d8b65
69a0495
 
 
 
 
0a7003a
 
 
 
25a6246
69a0495
 
 
 
 
 
 
c8d8b65
69a0495
c8d8b65
69a0495
 
 
25a6246
69a0495
 
 
cd860b5
25a6246
 
 
 
69a0495
 
25a6246
69a0495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d8b65
69a0495
 
 
 
 
 
 
0a7003a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: pegasus-samsum
  results: []
datasets:
- samsum
metrics:
- rouge
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-samsum

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4963

## Model description

Original bart (Bidirectional Auto Regressive Transformers) paper : https://arxiv.org/abs/1910.13461

## Training and evaluation data

Fine-Tuned over 1 epoch. The improvements over facebook/bart-large-cnn over the rouge benchmark is as follows : <br>
Rouge1 : 30.6 % <br>
Rouge2 : 103 % <br>
RougeL : 33.18 % <br>
RougeLSum : 33.18 % <br>

## Training procedure
Please refer to https://github.com/dhivyeshrk/FineTuning-Facebook-bart-large-cnn

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3689        | 0.54  | 500  | 1.4963          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3