a2c-PandaReachDense-v3 / config.json
dhinman's picture
Initial commit
421d6e4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a6750bf8ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6750bf3180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692612262496394494, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1OWLP4bFnbvgUKw/QV6APpuj27rFf90+Xe5zvxXqXL8rsam/QV6APpuj27rFf90+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASDFPP7jmAb5iY8s/8KjDPo85aD+INsW+SUFrv1+yvb5YETa/6TuEv2L8oz9+swy9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADU5Ys/hsWdu+BQrD8Rm5s/kMyZP5JQsz9BXoA+m6PbusV/3T5MYvw+uG4Hu8ByxD5d7nO/Fepcvyuxqb+7HmW/WqOhPfk3Z79BXoA+m6PbusV/3T5MYvw+uG4Hu8ByxD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0929513 -0.00481481 1.3462181 ]\n [ 0.2507191 -0.00167571 0.43261543]\n [-0.9528559 -0.8629468 -1.3257192 ]\n [ 0.2507191 -0.00167571 0.43261543]]", "desired_goal": "[[ 0.8093457 -0.12685668 1.5889704 ]\n [ 0.38214827 0.9071283 -0.38518167]\n [-0.9189649 -0.3705015 -0.71120214]\n [-1.0330783 1.2811396 -0.03435086]]", "observation": "[[ 1.0929513 -0.00481481 1.3462181 1.2156698 1.2015553 1.4008963 ]\n [ 0.2507191 -0.00167571 0.43261543 0.49293745 -0.00206654 0.38368797]\n [-0.9528559 -0.8629468 -1.3257192 -0.89500016 0.07892485 -0.9031978 ]\n [ 0.2507191 -0.00167571 0.43261543 0.49293745 -0.00206654 0.38368797]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6twPcdsWj2daVc+bLWdPFRJ9D0f7zU+8N0Cvr7dBj1V0fs9MCrdu3arl72dLBA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05875717 0.05332639 0.21036382]\n [ 0.01925155 0.11928049 0.17766999]\n [-0.12779975 0.03292631 0.12295786]\n [-0.00674941 -0.0740575 0.14079519]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8sM5OrQw9KMAWyUSwOMAXSUR0CnBASKFZgYdX2UKGgGR7/WExqO938oaAdLA2gIR0CnBIpnQID6dX2UKGgGR7/XSDyvs7dSaAdLBGgIR0CnBEk92X9jdX2UKGgGR7/NwuuieumraAdLA2gIR0CnBNCrksBidX2UKGgGR7/Bvm5lOGj9aAdLAmgIR0CnBA1LzwtrdX2UKGgGR7/A5S3solUqaAdLAmgIR0CnBNt78ejmdX2UKGgGR7/QE61b7j1gaAdLA2gIR0CnBJoysS00dX2UKGgGR7/TzkZJkGzKaAdLA2gIR0CnBFkGZ/kOdX2UKGgGR7+1GoaUA1ejaAdLAmgIR0CnBBjm8ujAdX2UKGgGR7+64tpVS4vwaAdLAmgIR0CnBOUdq+JxdX2UKGgGR7+6EAYHgP3BaAdLAmgIR0CnBCGXHBDYdX2UKGgGR7/UO45Lh73PaAdLA2gIR0CnBKd6cAindX2UKGgGR7/TwiaAnUlSaAdLA2gIR0CnBGZAprk9dX2UKGgGR7+UDhcZ9/jLaAdLAWgIR0CnBCZPVNHpdX2UKGgGR7+gFC9h7VriaAdLAWgIR0CnBCtOEdvLdX2UKGgGR7/LDjzZpSJkaAdLA2gIR0CnBPWSU1Q7dX2UKGgGR7/QO7QLNOdoaAdLA2gIR0CnBLhhQWN4dX2UKGgGR7/Yii7CiypraAdLBGgIR0CnBHuPvKEGdX2UKGgGR7+h7gKneiztaAdLAWgIR0CnBH/ZmI0qdX2UKGgGR7/Vyon8baRIaAdLBGgIR0CnBQdXLeQ/dX2UKGgGR7/Ib1h9b5doaAdLA2gIR0CnBMXrt3OfdX2UKGgGR7/TJqIrOJLvaAdLBWgIR0CnBERQBPsSdX2UKGgGR7/Ft3wCr92paAdLAmgIR0CnBNFSCOFQdX2UKGgGR7/GhDgIhQnAaAdLA2gIR0CnBJAood+5dX2UKGgGR7/VTtsvZh8ZaAdLA2gIR0CnBRe1jRUndX2UKGgGR7/E8vmHP/rCaAdLA2gIR0CnBFRV6u4gdX2UKGgGR7+/5eqrBCUpaAdLAmgIR0CnBJlL39JjdX2UKGgGR7/Ix0MgEEDAaAdLA2gIR0CnBN863iJgdX2UKGgGR7/G4NI9TxXoaAdLA2gIR0CnBSfcer+6dX2UKGgGR7/ZKmKqGUOeaAdLBGgIR0CnBGk9t/FzdX2UKGgGR7/aI5YHPeHjaAdLBGgIR0CnBK49gWrPdX2UKGgGR7/RkbPyCnP3aAdLA2gIR0CnBTYEwFkhdX2UKGgGR7/XwwCbMHKPaAdLBGgIR0CnBPSbQTmGdX2UKGgGR7/SOwPiDM/yaAdLA2gIR0CnBHcAJb+tdX2UKGgGR7/Nl6JIlMRIaAdLA2gIR0CnBUUx/NJOdX2UKGgGR7/I40/GEPDpaAdLA2gIR0CnBQOeJ53UdX2UKGgGR7/WpztCzC1raAdLBGgIR0CnBMJd8iOedX2UKGgGR7/KZOSGJvYOaAdLA2gIR0CnBIYAKfFrdX2UKGgGR7/OnF5v99+gaAdLA2gIR0CnBVF9a2WqdX2UKGgGR7/GBK+SKWLQaAdLA2gIR0CnBQ//3nIRdX2UKGgGR7/MuU2UB4lhaAdLA2gIR0CnBM7t7a7FdX2UKGgGR7+/hFVktmL+aAdLAmgIR0CnBI7N8ma6dX2UKGgGR7+lghKUVzp5aAdLAWgIR0CnBJU9IPK/dX2UKGgGR7/FSpBHCoCNaAdLAmgIR0CnBVzgEU0vdX2UKGgGR7+t+9alk6LgaAdLAmgIR0CnBNnH/95ydX2UKGgGR7/G2LpA2Q4kaAdLA2gIR0CnBR9w3o9tdX2UKGgGR7+24x1xKg7HaAdLAmgIR0CnBOI11nuidX2UKGgGR7/WMzuWrwOOaAdLBGgIR0CnBW/DLr5ZdX2UKGgGR7/MoMKCxu89aAdLA2gIR0CnBS4dZJTVdX2UKGgGR7/MzposZpBYaAdLA2gIR0CnBPE+xGDudX2UKGgGR7/cAEMb3oLYaAdLBmgIR0CnBLEQPI4mdX2UKGgGR7/D1M/QjUutaAdLAmgIR0CnBXkSdvsJdX2UKGgGR7/E/yoXKr7waAdLAmgIR0CnBLliz9jxdX2UKGgGR7/YKkEcKgIyaAdLBGgIR0CnBT81wYLtdX2UKGgGR7/RuZ1FH8TBaAdLA2gIR0CnBP3xWkrPdX2UKGgGR7/MAeaKDTScaAdLA2gIR0CnBYd/axoqdX2UKGgGR7/ADFqBVdX1aAdLAmgIR0CnBQhxgiNbdX2UKGgGR7/N9oexOclPaAdLA2gIR0CnBMiNbTttdX2UKGgGR7/NY02tMfzSaAdLA2gIR0CnBZRKHwgDdX2UKGgGR7/YMhHLA57xaAdLBGgIR0CnBVMzuWrwdX2UKGgGR7/DeBQN0/4ZaAdLAmgIR0CnBNHmA9V4dX2UKGgGR7+Z39rGipNsaAdLAWgIR0CnBZmUGFBZdX2UKGgGR7+6RHPNVzZIaAdLAmgIR0CnBV6WX1J2dX2UKGgGR7/ZEFGG21D0aAdLBGgIR0CnBR1wYLssdX2UKGgGR7/OKD0163RYaAdLA2gIR0CnBalnAZbZdX2UKGgGR7/YSuQp4KQaaAdLBGgIR0CnBOZQYUFjdX2UKGgGR7+Zrk8zQ/oraAdLAWgIR0CnBa4ODrZ8dX2UKGgGR7+g68xsVLzxaAdLAWgIR0CnBOvxpcoqdX2UKGgGR7/aLKmsNlRQaAdLBGgIR0CnBXNbkfcOdX2UKGgGR7/U9QXQ+lj3aAdLBGgIR0CnBTLFfiPydX2UKGgGR7/U5J9RaX8gaAdLA2gIR0CnBP6A4GUwdX2UKGgGR7/WyoXKr7wbaAdLBGgIR0CnBcZlOGj9dX2UKGgGR7/LHskY4yXVaAdLA2gIR0CnBYTSsr/bdX2UKGgGR7+a9bor4FibaAdLAWgIR0CnBQODzyz5dX2UKGgGR7/XLV4HHFP0aAdLBGgIR0CnBUhBzFMqdX2UKGgGR7/MSuhbnoxIaAdLA2gIR0CnBdYXGff5dX2UKGgGR7/RFAE+xGDuaAdLA2gIR0CnBZR51Ng0dX2UKGgGR7+fkq+ajN6gaAdLAWgIR0CnBdqAavRrdX2UKGgGR7/Qsxfv4M4MaAdLA2gIR0CnBVetCAtndX2UKGgGR7/aMBIWgvlEaAdLBGgIR0CnBRd0q6OHdX2UKGgGR7+/wgDA8B+4aAdLAmgIR0CnBeMa86FNdX2UKGgGR7/RPcSGrS3LaAdLA2gIR0CnBaF7laKUdX2UKGgGR7/AVvddmg8KaAdLAmgIR0CnBWBnjABUdX2UKGgGR7/OyTINmUW3aAdLA2gIR0CnBSR5C4SZdX2UKGgGR7/Bu8brC3w1aAdLAmgIR0CnBe5nL7oCdX2UKGgGR7/CiV0Lc9GJaAdLAmgIR0CnBazKLbYcdX2UKGgGR7+4rc0tRNypaAdLAmgIR0CnBfdnK4hEdX2UKGgGR7++b1AZ88cNaAdLAmgIR0CnBbXR5TqCdX2UKGgGR7/YpqASWZ7YaAdLBGgIR0CnBXSdOIqLdX2UKGgGR7/I8gZCOWB0aAdLA2gIR0CnBTSFwkxAdX2UKGgGR7+gLqlgtvn9aAdLAWgIR0CnBTmdqcmTdX2UKGgGR7+9jbzshPj5aAdLAmgIR0CnBgF8G9pRdX2UKGgGR7/JK15Sm65HaAdLA2gIR0CnBcaoVEeAdX2UKGgGR7/RNo8IRh+faAdLA2gIR0CnBYW4uscRdX2UKGgGR7+VVDKHO8kEaAdLAWgIR0CnBcs1KoQ4dX2UKGgGR7/Jzp5eJHiFaAdLA2gIR0CnBhEvsZ5zdX2UKGgGR7/CF10T101ZaAdLAmgIR0CnBY495hScdX2UKGgGR7/hI8yN4qwyaAdLBGgIR0CnBU4SHuZ1dX2UKGgGR7/WavRqoIfKaAdLA2gIR0CnBdfYBeXzdX2UKGgGR7/AmixmkFfRaAdLAmgIR0CnBVY5DJEIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}