audio-commands / README.md
dhaselhan's picture
bit3ca/audio-commands
bb65b16 verified
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-speech-commands-v2
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: audio-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.03
          split: test
          args: v0.03
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9256316218418907

audio-commands

This model is a fine-tuned version of MIT/ast-finetuned-speech-commands-v2 on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3977
  • Accuracy: 0.9256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0581 1.0 663 0.4816 0.8975
0.0454 2.0 1326 0.4184 0.9024
0.0404 3.0 1989 0.4361 0.9010
0.025 4.0 2653 0.4368 0.9016
0.0169 5.0 3316 0.3692 0.9173
0.0173 6.0 3979 0.4131 0.9173
0.0096 7.0 4642 0.3800 0.9177
0.0022 8.0 5306 0.3535 0.9264
0.0031 9.0 5969 0.3241 0.9315
0.0008 10.0 6632 0.3697 0.9236
0.0002 11.0 7295 0.4189 0.9173
0.001 12.0 7959 0.3206 0.9287
0.0003 13.0 8622 0.3794 0.9205
0.0003 14.0 9285 0.3999 0.9199
0.0 15.0 9948 0.4002 0.9220
0.0 16.0 10612 0.3896 0.9248
0.0001 17.0 11275 0.3930 0.9248
0.0 18.0 11938 0.3952 0.9254
0.0 19.0 12601 0.3971 0.9254
0.0 19.99 13260 0.3977 0.9256

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2