devdharpatel commited on
Commit
8072f2b
·
verified ·
1 Parent(s): 228aaff

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +58 -2
README.md CHANGED
@@ -4,12 +4,13 @@ tags:
4
  - Pendulum-v1
5
  - Reinforcement-Learning
6
  - Decisions
 
7
  model-index:
8
  - name: TLA
9
  results:
10
  - metrics:
11
  - type: mean_reward
12
- value: -154.92 +/- 31.97
13
  name: mean_reward
14
  - type: action_repetition
15
  value: 70.32%
@@ -24,4 +25,59 @@ model-index:
24
  name: Pendulum-v1
25
  type: Pendulum-v1
26
  ---
27
- # Temporally Layered Architecture: Pendulum-v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - Pendulum-v1
5
  - Reinforcement-Learning
6
  - Decisions
7
+ - TLA
8
  model-index:
9
  - name: TLA
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: '-154.92 +/- 31.97'
14
  name: mean_reward
15
  - type: action_repetition
16
  value: 70.32%
 
25
  name: Pendulum-v1
26
  type: Pendulum-v1
27
  ---
28
+ # Temporally Layered Architecture: Pendulum-v1
29
+
30
+ These are 10 trained models over **seeds (0-9)** of **[Temporally Layered Architecture (TLA)](https://github.com/dee0512/Temporally-Layered-Architecture)** agent playing **Pendulum-v1**.
31
+
32
+ ## Model Sources
33
+
34
+ **Repository:** [https://github.com/dee0512/Temporally-Layered-Architecture](https://github.com/dee0512/Temporally-Layered-Architecture)
35
+ **Paper:** [https://doi.org/10.1162/neco_a_01718]
36
+
37
+ # Training Details:
38
+ Using the repository:
39
+
40
+ ```
41
+ python main.py --env_name <environment> --seed <seed>
42
+ ```
43
+
44
+ # Evaluation:
45
+
46
+ Using the repository:
47
+
48
+ ```
49
+ python eval.py --env_name <environment>
50
+ ```
51
+
52
+ ## Metrics:
53
+
54
+ **mean_reward:** Mean reward over 10 seeds
55
+ **action_repeititon:** percentage of actions that are equal to the previous action
56
+ **mean_decisions:** Number of decisions required (neural network/model forward pass)
57
+
58
+
59
+ # Citation
60
+
61
+ The paper can be cited with the following bibtex entry:
62
+
63
+ ## BibTeX:
64
+
65
+ ```
66
+ @article{10.1162/neco_a_01718,
67
+ author = {Patel, Devdhar and Sejnowski, Terrence and Siegelmann, Hava},
68
+ title = "{Optimizing Attention and Cognitive Control Costs Using Temporally Layered Architectures}",
69
+ journal = {Neural Computation},
70
+ pages = {1-30},
71
+ year = {2024},
72
+ month = {10},
73
+ issn = {0899-7667},
74
+ doi = {10.1162/neco_a_01718},
75
+ url = {https://doi.org/10.1162/neco\_a\_01718},
76
+ eprint = {https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco\_a\_01718/2474695/neco\_a\_01718.pdf},
77
+ }
78
+ ```
79
+
80
+ ## APA:
81
+ ```
82
+ Patel, D., Sejnowski, T., & Siegelmann, H. (2024). Optimizing Attention and Cognitive Control Costs Using Temporally Layered Architectures. Neural Computation, 1-30.
83
+ ```